首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
以热力学基本原理为基础,建立了海洋温差发电系统仿真模型,对比分析了亚临界状态下R717、R134a和R600三种工质系统在约束蒸发器窄点温差条件下优化目标函数随蒸发温度的变化规律。结果表明:蒸发温度越高,不同系统换热器的热负荷以及冷、热海水泵功率越小,最佳蒸发压力和工质泵功率越大;不同系统的热效率和单位换热面积输出电量与蒸发温度的相关性较大,随蒸发温度的增加近似线性递增。蒸发器的换热面积与循环工质种类的相关性较小,但冷凝器的换热面积与循环工质种类的相关性较大。R717循环更接近于卡诺循环,R717的系统热效率最大,热负荷及泵功率最小,且其热经济性目标函数值在合适的范围内,是海洋温差发电系统较为理想的循环工质。研究结果可为海洋温差发电系统的设计、试验及设备选型提供理论参考。  相似文献   

2.
以系统发电成本(electricity production cost,EPC)为评价指标,对用于回收工业锅炉烟气余热的有机朗肯循环(ORC)系统进行了热经济分析与优化。结果表明,随着蒸发器和冷凝器节点温差的增大,系统发电成本先减小、再增大,即存在一组最优的蒸发器和冷凝器节点温差使发电成本最小。分别以纯工质R245fa和R236ea、非共沸混合工质R141b/RC318和乙烷/丁烷为循环工质,得到了最小发电成本时有机朗肯循环系统的最优工作参数,以及对应的系统净输出功、热效率和火用效率。  相似文献   

3.
文章基于热力学原理,建立了海洋温差发电系统仿真模型,分析了R717,R134a和R600这3种工质系统的性能参数随蒸发压力的变化。研究结果表明:随蒸发压力的增大,不同工质系统的蒸发器和冷凝器的热负荷和海水泵功率均近似呈幂递减的变化趋势,不同工质系统的泵功率均近似呈指数递增的变化趋势,不同工质系统的质量流量均近似呈幂递减的变化趋势,不同工质系统的热效率均近似呈对数递增的变化趋势;蒸发压力越大,R717和R600工质系统的单位换热面积发电量越大,但R134a工质系统的单位换热面积发电量随蒸发压力的增加存在峰值;在不同工质的饱和蒸汽压力下,R600工质系统的单位换热面积发电量最大,但其透平进出口压降较小,乏汽温度高,工质流量大,导致透平尺寸较大;R717工质系统具有较大的蒸发压力操作范围,且其热效率较大,单位换热面积发电量在合适的范围内,适用于海洋温差能发电系统。  相似文献   

4.
纯低温余热发电系统的优化分析   总被引:2,自引:0,他引:2  
通过建立纯低温余热发电系统的热力学模型,计算分析了过热蒸汽压力、进口烟气温度和节点温差等因素对纯低温余热发电系统发电性能的影响.结果表明:在设计纯低温余热发电系统时,存在一优化过热蒸汽压力,使得纯低温余热发电系统的单位烟气发电功率最大;随着进口烟气温度的升高,系统单位烟气发电功率增大,对应的优化过热蒸汽压力升高;而随着节点温差的增大,系统单位烟气发电功率减小,对应的优化过热蒸汽压力降低.  相似文献   

5.
针对工业中排放的低温烟气,建立有机朗肯循环发电系统的热经济分析模型,分析蒸发压力、热源温度及蒸发器最小传热温差对系统经济性能的影响。分析结果表明:热源温度为140℃,循环采用R123的经济性最佳,相应的发电成本与动态投资回收期分别为0.142元(/kW.h)与3.68年。余热发电系统存在一个经济性最高的蒸发压力,不同工质对应的最佳蒸发压力也不同。蒸发器内最小传热温差为15℃时,系统的经济性较好。烟气温度在100~180℃时,系统采用R123的投资回收期最短,而烟气温度高于180℃时,R141b的经济性更高;不宜采用有机朗肯循环发电技术回收温度低于100℃的低温烟气。  相似文献   

6.
杨新乐  赵阳升  冯增朝  戴文智 《热能动力工程》2012,27(6):664-669,735,736
为回收利用对流热采油页岩过程中产生的低温余热蒸汽,提出并设计有机朗肯循环(ORC)系统进行热力发电。在特定余热蒸汽参数条件下,基于R245fa循环工质,编制计算程序模拟分析了ORC系统变工况参数对该系统热效率及输出功率的影响规律。数值模拟结果表明:设定汽轮机背压为0.25MPa时,工质最高蒸发压力为2.566MPa,在此范围内,系统热效率随蒸发压力升高单调增加,增幅减缓;取蒸发器出口温度85℃时,对于不同的蒸发压力系统允许运行工质流量范围不同,在同一蒸发压力下,由于热源限制导致系统热效率并未随工质流量增加显著提高,但可得到更多输出净功;蒸发压力为1.5 MPa时,随余热排放温度的降低,系统输出净功显著提高;随汽轮机背压的降低,系统热效率得到明显改善,但汽轮机背压的降低增加了工质冷凝的困难,合适的背压值取0.2MPa。  相似文献   

7.
建立了回收低温烟气余热的有机朗肯循环系统投资回收年限计算模型,并以最短投资回收年限为目标对内部参数进行了优化,分析了外部参数对投资回收年限的影响。结果表明,随着蒸发温度、冷凝温度、蒸发器和冷凝器节点温差的增加,系统投资回收年限均先减小后增大,即存在一组最佳工作参数使回收年限最短。提高烟气进口温度和流量都可有效缩短投资回收年限。采用R245fa作为循环工质可使系统同时具有较短的回收年限和较大的净输出功。  相似文献   

8.
王锰  赵英汝  张浩然 《太阳能学报》2019,40(10):2716-2724
为提高海洋温差能发电系统的综合性能,以单位换热面积发电量和单位海水流量发电量为基础建立综合目标函数,选取蒸发温度、冷凝温度、蒸发器和冷凝器的海水出口温度为优化变量,利用粒子群算法对海洋温差能朗肯循环系统进行多目标参数优化。研究结果表明,在28℃温海水和5℃冷海水条件下,循环工质为R717时,蒸发器内的最佳蒸发温度为23.10℃,温海水出口温度为23.42℃;冷凝器内的最佳冷凝温度为12.31℃,冷海水出口温度为10.80℃;在换热器的海水进出口温差超过4℃时,换热器的海水出口温度对系统性能的影响较小。综上,采用多目标优化可实现对各评价指标间的协调,相比单目标优化的传统模型,多目标优化改善了系统的综合性能。  相似文献   

9.
为了验证海洋温差能发电技术的可行性,检验关键设备工作性能并提供可靠的数据支撑,设计并建造了一套50 kW级海洋温差能发电测试平台。通过建立有机朗肯循环系统数学模型,研究了冷热源温度对系统性能的影响,同时通过平台运行试验,验证了理论设计模型的准确性并测试了典型工况下系统的运行特性。结果表明:冷热海水温差越大,系统循环热效率越高;测试平台运行结果与模拟结果吻合良好,系统瞬时最大发电功率可达43.9 kW,平均循环热效率为2.49%。  相似文献   

10.
有机朗肯循环(ORC)系统在回收余热方面具有较大优势.本文采用双回路有机朗肯循环(DORC)系统回收电石炉烟气余热.对比了不同工质组合、不同循环结构下,高温循环的蒸发温度与冷凝温度对系统输出功率、效率和发电成本的影响.结果表明:与基础DORC相比,回热式DORC系统性能更佳,其中以甲醇与R123工质组合的系统净功率与效率最大,水作为高温循环工质在无回热的基础DORC系统中经济性优势明显.恒定热源条件下增大高温循环蒸发温度,对所有工质组合下同性能均有明显改善,增大高温循环冷凝温度则降低系统性能.  相似文献   

11.
《Energy》2004,29(8):1207-1217
This study presents an analysis of the performance of organic Rankine cycle (ORC) subjected to the influence of working fluids. The effects of various working fluids on the thermal efficiency and on the total heat-recovery efficiency have been investigated. It is found that the presence of hydrogen bond in certain molecules such as water, ammonia, and ethanol may result in wet fluid conditions due to larger vaporizing enthalpy, and is regarded as inappropriate for ORC systems. The calculated results reveal that the thermal efficiency for various working fluids is a weak function of the critical temperature. The maximum value of the total heat-recovery efficiency occurs at the appropriate evaporating temperature between the inlet temperature of waste heat and the condensing temperature. In addition, the maximum value of total heat-recovery efficiency increases with the increase of the inlet temperature of the waste heat source and decreases it by using working fluids having lower critical temperature. Analytical results using a constant waste heat temperature or based on thermal efficiency may result in considerable deviation of system design relative to the varying temperature conditions of the actual waste heat recovery and is regarded as inappropriate.  相似文献   

12.
Based on the theory of finite time thermodynamics, a subcritical simple irreversible organic Rankine cycle (SSIORC) model considering heat transfer loss and internal irreversible losses is established in this paper. The total heat transfer surface area is taken as a constraint, and R245fa is adopted as working fluid of the cycle in the performance optimization. The evaporator heat transfer surface area and mass flow rate of the working fluid are optimized to obtain the maximum power output and thermal efficiency of the SSIORC, respectively. In addition, the influences of the internal irreversibilities on the optimal performances are also investigated. The results show that when the evaporator heat transfer surface area is varied, the relationship between power output and thermal efficiency is a loop-shaped curve, and there exist maximum power output and thermal efficiency points, respectively. However, the two maximum points are very close to each other. When the mass flow rate of the working fluid is varied, the relationship between power output and thermal efficiency is a parabolic-like curve. With the decreases of expander and pump irreversible losses, the performances of the irreversible SSORC are close to those of the endoreversible SSORC with the only loss of heat transfer loss.  相似文献   

13.
The location of heat transfer pinch point in evaporator is the base of determining operating parameters of organic Rankine cycle (ORC). The physical mathematical model seeking the location of pinch point is established, by which, the temperature variations both of heat source and working fluid with UA can be obtained. Taking heat source with inlet temperature of 160 °C as example, the matching potentials between heat source and working fluid are revealed for subcritical and supercritical cycles with the determined temperature difference of pinch point. Thermal efficiency, exergy efficiency, work output per unit area and maximum work outputs are compared and analyzed based on the locations of heat transfer pinch point either. The results indicate that supercritical ORC has a better performance in thermal efficiency, exergy efficiency and work output while outlet temperature of heat source is low. Otherwise, subcritical performs better. Small heat transfer coefficient results in low value of work output per unit area for supercritical ORC. Introduction of IHX may reduce the optimal evaporating pressure, which has a great influence on heat source outlet temperature and superheat degree. The analysis may benefit the selection of operating parameters and control strategy of ORC.  相似文献   

14.
This paper performed a comparative analysis of organic Rankine cycle (ORC) using different working fluids, in order to recover waste heat from a solid oxide fuel cell‐gas turbine hybrid power cycle. Depending on operating parameters, criteria for the choice of the working fluid were identified. Results reveal that due to a significant temperature glide of the exhaust gas, the actual ORC cycle thermal efficiency strongly depends on the turbine inlet temperature, exhaust gas temperature, and fluid's critical point temperature. When exhaust gas temperature varies in the range of 500 K to 600 K, R123 is preferred among the nine dry typical organic fluids because of the highest and most stabilized mean thermal efficiency under wide operating conditions and its reasonable condensing pressure and turbine outlet specific volume, which in turn results in a feasible ORC cycle for practical concerns. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In consideration of the high-temperature characteristic of engine's waste heat and stricter environmental regulations, natural substance, including CO_2 and hydrocarbons, have been treated as promising working fluid for diesel engine waste heat recovery due to its environment friendly and excellent physical and chemical properties. This paper presented a comprehensive performance analysis on transcritical Rankine cycles for diesel engine multiple waste heat recovery using hydrocarbons and CO_2 as working fluid. The optimal turbine inlet pressures corresponding to maximum net power output, maximum exergy efficiency and minimum electricity production cost(EPC) were obtained. The effect of working fluid on these optimal pressures has been discussed. For fluids with low critical temperature, the optimal pressure corresponding to maximum net power output is lower than the one for maximum exergy efficiency, while the opposite results can be found for fluid with high critical temperature. Then, the effect of various working fluid properties in transcritical cycle performance is discussed. Comparison results show that CO_2 obtains only more power output than Ethane, Propane and Propene, but CO_2 is capable of absorbing more energy from engine coolant and regeneration heat with comparable total heat transfer areas and has an advantage in turbine size, particularly for hydrocarbons with high critical temperature.  相似文献   

16.
A multieffect refrigeration system that is based on a waste‐heat‐driven organic Rankine cycle that could produce refrigeration output of different magnitudes at different levels of temperature is presented. The proposed system is integration of combined ejector–absorption refrigeration cycle and ejector expansion Joule–Thomson (EJT) cooling cycle that can meet the requirements of air‐conditioning, refrigeration, and cryogenic cooling simultaneously at the expense of industrial waste heat. The variation of the parameters that affect the system performance such as industrial waste heat temperature, refrigerant turbine inlet pressure, and the evaporator temperature of ejector refrigeration cycle (ERC) and EJT cycles was examined, respectively. It was found that refrigeration output and thermal efficiency of the multieffect cycle decrease considerably with the increase in industrial waste heat temperature, while its exergy efficiency varies marginally. A thermal efficiency value of 22.5% and exergy efficiency value of 8.6% were obtained at an industrial waste heat temperature of 210°C, a turbine inlet pressure of 1.3 MPa, and ejector evaporator temperature of 268 K. Both refrigeration output and thermal efficiency increase with the increase in turbine inlet pressure and ERC evaporator temperature. Change in EJT cycle evaporator temperature shows a little impact on both thermal and exergy efficiency values of the multieffect cycle. Analysis of the results clearly shows that the proposed cycle has an effective potential for cooling production through exploitation of lost energy from the industry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A new approach to improve the performance of supercritical carbon dioxide Rankine cycle which uses low temperature heat source is presented. The mechanical pump in conventional supercritical carbon dioxide Rankine cycle is replaced by thermal driven pump. The concept of thermal driven pump is to increase the pressure of a fluid in a closed container by supplying heat. A low grade heat source is used to increase the pressure of the fluid instead of a mechanical pump, this increase the net power output and avoid the need for mechanical pump which requires regular maintenance and operational cost. The thermal driven pump considered is a shell and tube heat exchanger where the working fluid is contained in the tube, a tube diameter of 5 mm is chosen to reduce the heating time. The net power output of the Rankine cycle with thermal driven pump is compared to that of Rankine cycle with mechanical pump and it is observed that the net power output is higher when low grade thermal energy is used to pressurize the working fluid. The thermal driven pump consumes additional heat at low temperature (60 °C) to pressurize the working fluid.  相似文献   

18.
采用(火用)分析方法及PR状态方程,建立了低温地热发电有机朗肯循环的工质优选及主要参数优化热力学方法.比较计算了以10种干流体有机工质为循环工质的低温地热发电有机朗肯循环的输出功率、(火用)效率及其余主要热力性能.结果表明,低温地热发电有机朗肯循环的性能极大地受工质的物性及蒸发温度的影响.总体来看,随着工质临界温度的升...  相似文献   

19.
设计了以内燃机尾气余热为热源驱动的有机朗肯蒸气压缩制冷循环系统。根据热力学定律,建立了循环系统的数学模型,提出了尾气换热夹点确定方法。以Matlab和Refprop软件为工具,研究了有机朗肯循环(organic Rankine cycle,ORC)各换热器负荷、做功量、热效率分别随蒸发压力、冷凝温度的变化关系,并确定了最优工质。研究了蒸汽压缩制冷循环(vapor compression refrigeration,VCR)各换热器负荷、制冷系数分别随蒸发温度、冷凝温度的变化关系。由于压缩比的限制,确定了多种制冷工质在不同冷凝温度下的最低蒸发温度,结合相关标准中所规定的各型冷藏车蒸发温度的范围,确定了各型冷藏车的可选制冷剂。研究了与可选工质对应的制冷系数随蒸发温度的变化关系,从而确定最优工质。计算了各型冷藏车在采用最优制冷剂时,在最严苛工况下的制冷量、制冷系数及综合系数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号