首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X.D. Wang 《Solar Energy》2009,83(5):605-613
This paper presents the analysis of low-temperature solar Rankine cycles for power generation using zeotropic mixtures. Three typical mass fractions 0.9/0.1 (Ma) 0.65/0.35 (Mb), 0.45/0.55 (Mc) of R245fa/R152a are chosen. In the proposed temperature range from 25 °C to 85 °C, the three zeotropic mixtures are investigated as the working fluids of the low-temperature solar Rankine cycle. Because there is an obvious temperature glide during phase change for zeotropic mixtures, an internal heat exchanger (IHE) is introduced to the Rankine cycle. Investigation shows that different from the pure fluids, among the proposed zeotropic mixtures, the isentropic working fluid Mb possesses the lowest Rankine cycle efficiency. For zeotropic mixtures a significant increase of thermal efficiencies can be gained when superheating is combined with IHE. It is also indicated that utilizing zeotropic mixtures can extend the range of choosing working fluids for low-temperature solar Rankine cycles.  相似文献   

2.
The paper presents an on site experimental study of a low-temperature solar Rankine cycle system for power generation. The cycle performances of pure fluid M1 (R245fa) and zeotropic mixtures M2 (R245fa/R152a, 0.9/0.1) and M3 (R245fa/R152a, 0.7/0.3) are compared, respectively, based on the experimental prototype. The experiments have been conducted under constant volume flow rate of different fluids. The results show that, with the component of R152a increasing, the system pressure level increases and the power output varies accordingly, which provides an additional means of capacity adjustment. The collector efficiency and thermal efficiency of zeotropic mixtures are comparatively higher than pure fluid of R245fa in the experimental condition, which indicates that zeotropic mixtures have the potential for overall efficiency improvement. Due to the non-isothermal condensation of zeotropic mixture, the condensing heat could be partially recovered by adding an external heat exchanger. Thus, compared with pure fluid R245fa the system overall efficiency of zeotropic mixtures could be improved.  相似文献   

3.
With the temperature glide in saturation states, the mixture working fluids have the advantages in thermal energy conversion. In this study, through the investigation in optimum mass fractions of multicomponent mixture working fluids, the economic performance enhancement of the organic Rankine cycle system is obtained for recovering waste heat from engine. The zero ozone-depletion-potential and dry working fluids of R236fa, R245fa, and R1336mzz(Z) are selected as the components of multicomponent mixtures in the system. The net power output, heat transfer calculation, and apparatus cost evaluation are employed to evaluate the power cost of the organic Rankine cycle system. Parameters of temperatures of waste heat sources and efficiencies of expanders are taken into account. The comparisons of economic performances for single-component working fluid and multicomponent mixtures with optimum mass fractions are proposed. The results show that R245fa, having a levelized cost of energy, LCOE, of 8.75 × 10−2 $/kW-h, performs the best for single-component working fluids, better than R236fa by 1.6% and R1336mzz(Z) by 8.3%. All the two-component mixtures are superior to their single-component working fluids in economic performance. Among the three two-component mixture working fluids, R1336mzz(Z)/R236fa has the lowest LCOEmin, 8.57 × 10−2 $/kW-h, followed by R236fa/R245fa and R245fa/R1336mzz(Z). In addition, R236fa/R245fa/R1336mzz(Z) mixture, which has a LCOEmin of 8.47 × 10−2 $/kW-h, economically outperforms all other working fluids and has a lower LCOEmin than R236fa/R245fa by 1.7% and R245fa/R1336mzz(Z) by 2%.  相似文献   

4.
针对120℃以下的低温余热热源,探讨了基本有机郎肯循环发电系统和再热式有机朗肯循环发电系统模型的基本原理.从热力学第一定律角度出发,研究了纯工质R245fa和非共沸混合工质R21/R245fa在基本有机郎肯循环系统中,以及纯工质R245fa在再热式有机郎肯循环系统中,三种形式的有机郎肯循环系统热力性能随蒸发温度的变化情况.与纯工质基本有机郎肯循环系统相比,再热式有机郎肯循环最大可提高系统净输出功7.08%,而混合工质对提高整个系统热力性能具有较大的优势,净输出功和热效率最大可提高4.67%和2.91%.  相似文献   

5.
In this study, performances of two pure hydrocarbons and seven mixtures composed of propylene, propane, HFC152a, and dimethylether were measured to substitute for HCFC22 in residential air-conditioners and heat pumps. Thermodynamic cycle analysis was carried out to determine the optimum compositions before testing and actual tests were performed in a breadboard-type laboratory heat pump/air-conditioner at the evaporation and condensation temperatures of 7 and 45 °C, respectively. Test results show that the coefficient of performance of these mixtures is up to 5.7% higher than that of HCFC22. While propane showed a 11.5% reduction in capacity, most of the fluids had a similar capacity to that of HCFC22. For these fluids, compressor-discharge temperatures were reduced by 11–17 °C. For all fluids tested, the amount of charge was reduced by up to 55% as compared to HCFC22. Overall, these fluids provide good performances with reasonable energy-savings without any environmental problem and thus can be used as long-term alternatives for residential air-conditioning and heat-pumping applications.  相似文献   

6.
This article is the second in a three-part study. This second part focuses on flow boiling heat transfer of refrigerant R245fa in a silicon multi-microchannel heat sink and their comparison with the results presented in part I for refrigerant R236fa. This heat sink was the same as utilized in part I. The test conditions covered base heat fluxes from 3.6 to 190 W/cm2, mass velocities from 281 to 1501 kg/m2 s and the exit vapour qualities from 0% to 78%. The effect of saturation pressure on heat transfer was tested from 141 to 273 kPa for R245fa and the effect of sub-cooling from 0 to 19 K. The R245fa database includes 693 local heat transfer coefficient measurements, for which four different heat transfer trends were identified, although in most cases the heat transfer coefficient increased with heat flux, was almost independent of vapour quality and increased with mass velocity. The entire database, including both R245fa and R236fa measurements, was compared with four prediction methods for flow boiling heat transfer in microchannels. The three-zone model of Thome et al. (J.R. Thome, V. Dupont, A.M. Jacobi, Heat transfer model for evaporation in microchannels. Part I: presentation of the model, International J. Heat Mass Transfer 47 (2004) 3375–3385) was found to give the best predictions, capturing 90% of the data within ±30% in the slug and annular flow regimes (x > 5%).  相似文献   

7.
Research on new working fluid for uses in absorption systems has been continued. The feasibility of a solar driven DAR using the mixture R124/DMAC as working fluid is investigated by numerical simulation. The cycle is simulated for two cooling medium temperatures, 27 °C and 35 °C, and four driving heat temperatures in the range [90 °C–180 °C]. The performance characteristics of this system is analyzed parametrically by computer simulation for a design cooling capacity of 1 kW. The results show that the system performance and the lowest (minimum) evaporation temperature reached are largely dependent upon the absorber efficiency and the driving temperature. It is shown that for solar applications this fluid mixture has a higher COP and may constitute an alternative to the conventional ammonia–water system.  相似文献   

8.
In the paper conducted has been a concise survey of up to date investigations and simulations of the low-temperature Clausius–Rankine (C–R) cycle as well as presented have been authors own results of calculations regarding effectiveness of operation of the power station following such cycle. The power station is supplied with water being a carrier of geothermal or waste heat with temperature 80–115 °C. Considered has been a possibility of application of different working fluids, both natural and synthetic as well as mixtures. Presented has been influence of temperature of the upper heat reservoir on the effectiveness and power of the power station. In the concluding remarks there has been enclosed an opinion that the cycle efficiency is not a sufficient criterion in the assessment of the C–R cycle efficiency. Presented also been an indirect relation of the working fluid critical temperature and effectiveness of the cycle realized in the temperature range below 115 °C.  相似文献   

9.
The performance of different working fluids to recover low-temperature heat source is studied. A simple Rankine cycle with subcritical configuration is considered. This work is to screen working fluids based on power production capability and component (heat exchanger and turbine) size requirements. Working fluids considered are R134a, R123, R227ea, R245fa, R290, and n-pentane. Energy balance is carried out to predict operating conditions of the process. Outputs of energy balance are used as input for exergy analysis and components (heat exchanger and turbine) design. The heat exchanger is divided into small intervals so that logarithmic mean temperature difference (LMTD) method is applicable. R227ea gives highest power for heat source temperature range of 80–160 °C and R245fa produces the highest in the range of 160–200 °C. There is optimal pressure where the heat exchanger surface area is minimum. This optimal pressure changes with heat source temperature and working fluid used. The least heat exchanger area required at constant power rating is found when the working fluid is n-pentane. At lower heat source temperature (80 °C), the maximum power output and minimum heat exchanger surface area for different working fluids is comparable.  相似文献   

10.
Experimental results of two-phase pressure drop in a horizontal circular microchannel are reported in this paper. A test tube was made of fused silica having an internal diameter of 781 μm with a total length of 261 mm and a heated length of 191 mm. The outer surface of the test tube was coated with an electrically conductive thin layer of ITO (indium tin oxide) for direct heating of the test section. Refrigerants R134a and R245fa were used as the working fluids, and mass flux during the experiments was varied between 100 and 650 kg/m2-s. Experiments were performed at two different system pressures corresponding to saturation temperatures of 25°C and 30°C for R134a and at three different system pressures corresponding to saturation temperatures of 30°C, 35°C, and 40°C for R245fa. Two-phase frictional pressure drop characteristics with variation of mass flux, vapor fraction, saturation temperature, and heat flux were explored in detail. Finally, the prediction capability of some well-known correlations available in the literature, some developed for macrochannels and others especially developed for microchannels, was assessed.  相似文献   

11.
热泵开水器具有较高的能源利用效率,是公共场所电加热开水装置的理想替代品。从提高能源效率和一机两用的角度,构建了一种高温复合热泵开水器系统。建立了系统热力学模型,选R236fa、R245fa、R365mfc、R245ca、RC318和R236ea等6种较高临界温度的制冷工质,通过能量分析和[火用]分析的方法,探讨了不同制冷工质对高温复合热泵开水器系统性能的影响。研究结果表明:R245fa作为工质的高温复合热泵开水器系统具有最佳的性能,而以RC318作为工质的系统性能最差。在给定工况下,R245fa作为工质系统制热性能系数(COPh)为2.47,而其制冷性能系数(COPc)为3.37,[火用]损失和[火用]效率分别为9.47 kW和49.07%;与R245fa相比,RC318作为工质系统的总能耗增加了39.53%。  相似文献   

12.
Yiping Dai  Dongshuai Hu  Yi Wu  Yike Gao  Yue Cao 《传热工程》2017,38(11-12):990-999
ABSTRACT

The applications of zeotropic mixtures and multi-evaporator systems are two viable options to improve the performance of the organic Rankine cycle (ORC). This paper conducts the thermo-economic comparison of a basic ORC with R245fa/R600a and a parallel double-evaporator organic Rankine cycle (PDORC) with R245fa. Four indicators are used to evaluate the system performance: net power, cycle efficiency, area of heat exchangers, and area of heat exchangers per net power output. Submodels of condensers and evaporators are established specially for pure organic fluids and zeotropic mixtures. The performance optimization using genetic algorithm is conducted to compare the two systems quantitatively. The optimization indicates a zeotropic mixture is more profitable than a pure work fluid in a basic ORC with a worthy additional investment of heat exchanger. Though PDORC can increase net power obviously, it would decrease the thermo-economic performance of ORC.  相似文献   

13.
This article presents new experimental critical heat flux results under saturated flow boiling conditions for a macro-/microscale tube. The data were obtained in a horizontal 2.20-mm inside diameter stainless-steel tube with heating lengths of 361 and 154 mm, R134a and R245fa as working fluids, mass velocities ranging from 100 to 1500 kg/m2-s, critical heat flux from 25 to 300 kW/m2, exit saturation temperatures of 25, 31, and 35°C, and critical vapor qualities ranging from 0.55 to 1. The experimental results show that critical heat flux (CHF) increases with increasing mass velocity and inlet subcooling but decreases with increasing saturation temperature and heated length. The data also indicated a higher CHF for R245fa when compared with R134a at similar conditions. The experimental data were compared against four CHF predictive methods and the results of the comparisons are reported.  相似文献   

14.
An experimental test was conducted to compare R245fa with R245fa/R601a on the organic Rankine cycle performance. The major objective of this paper is to ascertain the highest thermal efficiency and the optimal dimensionless volume ratio using the two working fluids. The experimental system consists of an electrically heated boiler, a vapor generator, a scroll expander, a condenser, a working fluid pump, and so on. For the typical weather conditions of May in Tianjin, the experiment results show that the working fluid charge has an important influence on the organic Rankine cycle performances. The optimal isentropic efficiency of the scroll expander corresponds to the design expansion ratio. Underexpanded and overexpanded processes result in the decline of the isentropic efficiency of the scroll expander, with the former playing a major role. R245fa/R601a improves the heat transfer performance in the vapor generator because of the nonisothermal phase change. The highest thermal efficiency for R245fa and R245fa/R601a is 4.38% and 4.45%, thereby illustrating that R245fa/R601a precedes R245fa. The optimal dimensionless volume ratios for R245fa and R245fa/R601a are 0.38 and 0.41, respectively. The experimental test lays foundation of the 500‐kW geothermal plant for demonstration in the next step. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
高温热泵作为一种有效的节能技术可以满足大多数的工业用热需求,遴选安全、环保、高效的制冷剂是当前高温热泵技术研究的重要工作之一。针对闪蒸补气式高温热泵,基于EES(Engineering Equation Solver)软件建立系统数学模型,以性能系数(COP)、制热量、单位容积制热量、冷凝压力、压缩比以及压缩机排气温度为性能指标,在冷凝温度 ≥ 100℃,温升分别为40℃、50℃和60℃工况下,对R1224yd(Z)、R1233zd(E)、R1336mzz(Z)和R1234ze(Z) 四种氢氟烯烃制冷剂在闪蒸补气式热泵系统中的应用潜力进行分析,并与R245fa比较。结果表明,R1336mzz(Z) 的COP最大、冷凝压力最低,但单位容积制热量最小,相对适用于小容量供热系统;R1234ze(Z)的单位容积制热量最大,且COP与R245fa相当,是R245fa的良好替代工质,尤其适用于大容量高温升供热系统;R1233zd(E) 虽然单位容积制热量偏低,但其COP、制热量和冷凝压力相对R245fa具有显著优势,亦可作为R245fa的替代工质;与R245fa相比,R1224yd(Z) 的热力性能无明显优势。  相似文献   

16.
B. Zheng  Y.W. Weng 《Solar Energy》2010,84(5):784-1157
A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector.  相似文献   

17.
Thermally activated systems based on sorption cycles, as well as mechanical systems based on vapor compression/expansion are assessed in this study for waste heat recovery applications. In particular, ammonia-water sorption cycles for cooling and mechanical work recovery, a heat transformer using lithium bromide-water as the working fluid pair to yield high temperature heat, and organic Rankine cycles using refrigerant R245fa for work recovery as well as versions directly coupled to a vapor compression cycle to yield cooling are analyzed with overall heat transfer conductances for heat exchangers that use similar approach temperature differences for each cycle. Two representative cases are considered, one for smaller-scale and lower temperature applications using waste heat at 60 °C, and the other for larger-scale and higher temperature waste heat at 120 °C. Comparative assessments of these cycles on the basis of efficiencies and system footprints guide the selection of waste heat recovery and upgrade systems for different applications and waste heat availabilities. Furthermore, these considerations are used to investigate four case studies for waste heat recovery for data centers, vehicles, and process plants, illustrating the utility and limitations of such solutions. The increased implementation of such waste heat recovery systems in a variety of applications will lead to decreased primary source inputs and sustainable energy utilization.  相似文献   

18.
Optimisation of Organic Rankine Cycle (ORCs) for binary-cycle geothermal applications could play a major role in determining the competitiveness of low to moderate temperature geothermal resources. Part of this optimisation process is matching cycles to a given resource such that power output can be maximised. Two major and largely interrelated components of the cycle are the working fluid and the turbine. Both components need careful consideration: the selection of working fluid and appropriate operating conditions as well as optimisation of the turbine design for those conditions will determine the amount of power that can be extracted from a resource. In this paper, we present the rationale for the use of radial-inflow turbines for ORC applications and the preliminary design of several radial-inflow machines based on a number of promising ORC systems that use five different working fluids: R134a, R143a, R236fa, R245fa and n-Pentane. Preliminary meanline analysis lead to the generation of turbine designs for the various cycles with similar efficiencies (77%) but large differences in dimensions (139-289 mm rotor diameter). The highest performing cycle, based on R134a, was found to produce 33% more net power from a 150 °C resource flowing at 10 kg/s than the lowest performing cycle, based on n-Pentane.  相似文献   

19.
A Kalina power cycle driven by renewable energy sources   总被引:1,自引:0,他引:1  
The present paper investigates a Kalina cycle using low-temperature heat sources to produce power. The main heat source of the cycle is provided from flat solar collectors. In addition, an external heat source is connected to the cycle, which corresponds to 5% up to 10% of the total thermal energy supplied to the cycle. The cycle operates at low pressure levels (0.2–4.5 bar) and low maximum temperature (130 °C). The NH3 mass fraction at the turbine inlet varies along with the expansion pressure and the effects on the cycle efficiency are studied. For given conditions, an optimum range of vapor mass fractions and operating pressures can be identified that result in optimum cycle performance. Simple equations have been derived that link the operational parameters with the independent variables as well as with the cycle efficiency.  相似文献   

20.
A new approach to improve the performance of supercritical carbon dioxide Rankine cycle which uses low temperature heat source is presented. The mechanical pump in conventional supercritical carbon dioxide Rankine cycle is replaced by thermal driven pump. The concept of thermal driven pump is to increase the pressure of a fluid in a closed container by supplying heat. A low grade heat source is used to increase the pressure of the fluid instead of a mechanical pump, this increase the net power output and avoid the need for mechanical pump which requires regular maintenance and operational cost. The thermal driven pump considered is a shell and tube heat exchanger where the working fluid is contained in the tube, a tube diameter of 5 mm is chosen to reduce the heating time. The net power output of the Rankine cycle with thermal driven pump is compared to that of Rankine cycle with mechanical pump and it is observed that the net power output is higher when low grade thermal energy is used to pressurize the working fluid. The thermal driven pump consumes additional heat at low temperature (60 °C) to pressurize the working fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号