首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
太阳能液体除湿空调系统中除湿器型式的选择   总被引:6,自引:2,他引:6  
太阳能液体除湿空调系统是一种利用太阳能等低温热源的节能空调系统。除湿器直接影响太阳能液体除湿空调系统的性能。本文从焓湿图、蓄能、MR的选取和除湿效果等几个方面对目前被广泛应用的两种典型的除湿器进行了比较分析。  相似文献   

2.
液体除湿空调系统的数学模型与性能分析   总被引:7,自引:2,他引:7  
建立了一种液体除湿空调系统,核心部件为液体吸收式除湿器,蒸发冷却器是重要组成部分,两者的主体均采用蜂窝结构。给出了统一的数学模型,对除湿器和冷却器内复杂的传热传质过程进行描述。数值模拟结果与实验数据基本一致。运用上述模型编制程序,对系统性能进行预测,表明液体除湿空调系统方案可行。  相似文献   

3.
除湿型空调系统作为一种运行模式全新的概念型空调系统,与蒸汽压缩式空调系统和吸收式空调系统相比,人们了解还较少。除湿型空调系统按照工作介质划分,可分为固体除湿和液体除湿系统;按照制冷循环方式划分,可分为开式系统和闭式系统;按照结构划分,可分为简单系统和复合系统。  相似文献   

4.
《节能》2016,(9):6-9
液体除湿空调不仅可以对热负荷和湿负荷独立处理,而且不断循环的盐溶液还可以对空气起到很好的杀菌效果,这可以提高人们生活和工作的空气品质,避免由传统空调引起的温室效应。但是在溶液除湿和再生的过程中溶液表面的水蒸气压力与空气的水蒸气压力差不断减小,阻碍了除湿过程和再生过程的进行,所以为了得到更高的效率,需要探索新型的液体除湿装置。液体除湿系统主要由除湿器、再生器、循环溶液组成,其中再生器的性能直接影响到整个液体除湿系统的性能。简要介绍了传统液体除湿系统的再生器、除湿器、除湿溶液及新型液体除湿系统再生器的发展。  相似文献   

5.
太阳能液体除湿空调系统研究现状   总被引:4,自引:1,他引:4  
方承超  黄强华 《新能源》1995,17(7):8-11
本文论述了近年来国内外对太阳能液体除湿系统的研究状况。从太阳能液体除湿空调系统的实验研究,除湿/再生塔的传热传质模型的研究、液体除湿剂的研究等三个方面进行了阐述。  相似文献   

6.
以实际液体除湿空调系统作为实验研究对象,通过理论分析得出气流速度、溶液喷淋量是空调系统对空气颗粒物除尘效率的重要影响因素。系统以氯化锂溶液作为除湿剂,通过改变系统参数(填料形式、除湿液喷淋量、空气流动风速),对空气中不同粒径(0.3、0.5、1、2、3、5μm)的颗粒物除尘效率进行实验研究,得到空调液体除湿系统对颗粒物除尘效率与这些参数的关系变化曲线。  相似文献   

7.
太阳能液体除湿空调系统再生和蓄能特性的研究   总被引:1,自引:1,他引:1  
太阳能液体除湿空调系统中,能量在液体除湿剂中以化学能的形式存在,蓄能潜力大,再生温度低,可以利用太阳能或其它低位余热和废热。着重分析了液体除湿空调系统中溶液的再生原理和再生过程的传热传质特性,对再生过程进行了实验研究,获得了再生过程对流传质和对流换热的实验准则方程,讨论了各主要因素对再生量的影响。对再生器的蓄能特性进行了分析,讨论了太阳能液体除湿空调系统蓄能工况的运行方式。  相似文献   

8.
太阳能液体除湿空调性能的实验研究   总被引:10,自引:0,他引:10  
在对液体除湿机理研究的基础上,建立了太阳能液体除湿空调系统实验台,采用氯化钙溶液作为除湿剂,对系统的除湿性能进行了实验研究,对影响除湿的各主要因素进行了分析。  相似文献   

9.
蓄能型液体除湿蒸发冷却系统中除湿性能的实验研究   总被引:4,自引:0,他引:4  
提出了一种新型空调系统——液体除湿冷却空调系统的设计方案并搭建一功率为3kW的实验台,考虑到除湿过程和再生过程是该系统性能优良的决定性环节,设计加工了水冷型波纹板降膜式结构的除湿器和以丝网填料作为内部填料的再生器。在此实验装置上对系统的除湿过程以及其蓄能能力特性进行了实验研究,得出影响该系统除湿能力、蓄能能力等方面的主要因素,为系统的优化设计和运行提供依据。  相似文献   

10.
液体除湿空调中除湿剂再生过程的效率和稳定决定整个系统运行效率和稳定性.对空气与除湿溶液质量流量之比、除湿溶液温度、除湿溶液的溶质浓度对除湿溶液再生系统性能的影响进行了探讨.  相似文献   

11.
Natural gas is a fossil fuel that has been used and investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. Compared with conventional gasoline engines, SI engines using natural gas can run at higher compression ratios, thus producing higher thermal efficiencies but also increased nitrogen oxide (NOx) emissions, while producing lower emissions of carbon dioxide (CO2), unburned hydrocarbons (HC) and carbon monoxide (CO). These engines also produce relatively less power than gasoline-fueled engines because of the convergence of one or more of three factors: a reduction in volumetric efficiency due to natural-gas injection in the intake manifold; the lower stoichiometric fuel/air ratio of natural gas compared to gasoline; and the lower equivalence ratio at which these engines may be run in order to reduce NOx emissions. High NOx emissions, especially at high loads, reduce with exhaust gas recirculation (EGR). However, EGR rates above a maximum value result in misfire and erratic engine operation. Hydrogen gas addition increases this EGR threshold significantly. In addition, hydrogen increases the flame speed of the natural gas-hydrogen mixture. Power levels can be increased with supercharging or turbocharging and intercooling. Natural gas is used to power CI engines via the dual-fuel mode, where a high-cetane fuel is injected along with the natural gas in order to provide a source of ignition for the charge. Thermal efficiency levels compared with normal diesel-fueled CI-engine operation are generally maintained with dual-fuel operation, and smoke levels are reduced significantly. At the same time, lower NOx and CO2 emissions, as well as higher HC and CO emissions compared with normal CI-engine operation at low and intermediate loads are recorded. These trends are caused by the low charge temperature and increased ignition delay, resulting in low combustion temperatures. Another factor is insufficient penetration and distribution of the pilot fuel in the charge, resulting in a lack of ignition centers. EGR admission at low and intermediate loads increases combustion temperatures, lowering unburned HC and CO emissions. Larger pilot fuel quantities at these load levels and hydrogen gas addition can also help increase combustion efficiency. Power output is lower at certain conditions than diesel-fueled engines, for reasons similar to those affecting power output of SI engines. In both cases the power output can be maintained with direct injection. Overall, natural gas can be used in both engine types; however further refinement and optimization of engines and fuel-injection systems is needed.  相似文献   

12.
Performance assessment of some ice TES systems   总被引:1,自引:0,他引:1  
In this paper, a performance assessment of four main types of ice storage techniques for space cooling purposes, namely ice slurry systems, ice-on-coil systems (both internal and external melt), and encapsulated ice systems is conducted. A detailed analysis, coupled with a case study based on the literature data, follows. The ice making techniques are compared on the basis of energy and exergy performance criteria including charging, discharging and storage efficiencies, which make up the ice storage and retrieval process. Losses due to heat leakage and irreversibilities from entropy generation are included. A vapor-compression refrigeration cycle with R134a as the working fluid provides the cooling load, while the analysis is performed in both a full storage and partial storage process, with comparisons between these two. In the case of full storage, the energy efficiencies associated with the charging and discharging processes are well over 98% in all cases, while the exergy efficiencies ranged from 46% to 76% for the charging cycle and 18% to 24% for the discharging cycle. For the partial storage systems, all energy and exergy efficiencies were slightly less than that for full storage, due to the increasing effect wall heat leakage has on the decreased storage volume and load. The results show that energy analyses alone do not provide much useful insight into system behavior, since the vast majority of losses in all processes are a result of entropy generation which results from system irreversibilities.  相似文献   

13.
The thermal decomposition of limestone has been selected as a model reaction for developing and testing an atmospheric open solar reactor. The reactor consists of a cyclone gas/particle separator which has been modified to let the concentrated solar energy enter through a windowless aperture. The reacting particles are directly exposed to the solar irradiation. Experimentation with a 60 kW reactor prototype was conducted at PSI's 90m2 parabolic solar concentrator, in a continuous mode of operation. A counter-current flow heat exchanger was employed to preheat the reactants. Eighty five percent degree of calcination was obtained for cement raw material and 15% of the solar input was converted into chemical energy (enthalpy).The technical feasibility of the solar thermal decomposition of limestone was experimentally demonstrated. The use of solar energy as a source for high-temperature process heat offers the potential of reducing significantly the CO2 emissions from lime producing plants. Such a solar thermochemical process can find application in sunny rural areas for avoiding deforestation.  相似文献   

14.
Chlamydomonas reinhardtii cc124 and Azotobacter chroococcum bacteria were co-cultured with a series of volume ratios and under a variety of light densities to determine the optimal culture conditions and to investigate the mechanism by which co-cultivation improves H2 yield. The results demonstrated that the optimal culture conditions for the highest H2 production of the combined system were a 1:40 vol ratio of bacterial cultures to algal cultures under 200 μE m?2 s?1. Under these conditions, the maximal H2 yield was 255 μmol mg?1 Chl, which was approximately 15.9-fold of the control. The reasons for the improvement in H2 yield included decreased O2 content, enhanced algal growth, and increased H2ase activity and starch content of the combined system.  相似文献   

15.
Increasing awareness of environmental problems caused by the current use of fossil fuel-based energy, has led to the search for alternatives. Hydrogen is a good alternative and the cyanobacterium Anabaena sp. PCC 7120 is naturally able to produce molecular hydrogen, photosynthetically from water and light. However, this H2 is rapidly consumed by the uptake hydrogenase.This study evaluated the hydrogen production of Anabaena sp. PCC 7120 wild-type and mutants: hupL (deficient in the uptake hydrogenase), hoxH (deficient in the bidirectional hydrogenase) and hupL/hoxH (deficient in both hydrogenases) on several experimental conditions, such as gas atmosphere (argon and propane with or without N2 and/or CO2 addition), light intensity (54 and 152 ??Em−2s−1), light regime (continuous and light/dark cycles 16 h/8 h) and nickel concentrations in the culture medium.In every assay, the hupL and hupL/hoxH mutants stood out over wild-type cells and the hoxH mutant. Nevertheless, the hupL mutant showed the best hydrogen production except in an argon atmosphere under 16 h light/8 h dark cycles at 54 ??Em−2s−1 in the light period, with 1 ??M of NiCl2 supplementation in the culture medium, and under a propane atmosphere.In all strains, higher light intensity leads to higher hydrogen production and if there is a daily 1% of CO2 addition in the gas atmosphere, hydrogen production could increase 5.8 times, related to the great increase in heterocysts differentiation (5 times more, approximately), whereas nickel supplementation in the culture medium was not shown to increase hydrogen production. The daily incorporation of 1% of CO2 plus 1% of N2 did not affect positively hydrogen production rate.  相似文献   

16.
La–Fe–B hydrogen-storage alloys were prepared using a vacuum induction-quenching furnace with a rotating copper wheel. The thermodynamic and kinetic properties of the La–Fe–B hydrogen-storage alloys were investigated in this work. The P–C–I curves of the La–Fe–B alloys were measured over a H2 pressure range of 10−3 MPa to 2.0 MPa at temperatures of 313, 328, 343 and 353 K. The P–C–I curves revealed that the maximum hydrogen-storage capacity of the alloys exceeded 1.23 wt% at a pressure of approximately 1.0 MPa and temperature of 313 K. The standard enthalpy of formation ΔH and standard entropy of formation ΔS for the alloys' hydrides, obtained according to the van't Hoff equation, were consistent with their application as anode materials in alkaline media. The alloys also exhibited good absorption/desorption kinetics at room temperature.  相似文献   

17.
This paper presents the exergy analysis results for the production of several biofuels, i.e., SNG (synthetic natural gas), methanol, Fischer–Tropsch fuels, hydrogen, as well as heat and electricity, from several biowastes generated in the Dutch province of Friesland, selected as one of the typical European regions. Biowastes have been classified in 5 virtual streams according to their ultimate and proximate analysis. All production chains have been modeled in Aspen Plus in order to analyze their technical performance. The common steps for all the production chains are: pre-treatment, gasification, gas cleaning, water–gas-shift reactions, catalytic reactors, final gas separation and upgrading. Optionally a gas turbine and steam turbines are used to produce heat and electricity from unconverted gas and heat removal, respectively. The results show that, in terms of mass conversion, methanol production seems to be the most efficient process for all the biowastes. SNG synthesis is preferred when exergetic efficiency is the objective parameter, but hydrogen process is more efficient when the performance is analyzed by means of the 1st Law of Thermodynamics. The main exergy losses account for the gasification section, except in the electricity and heat production chain, where the combined cycle is less efficient.  相似文献   

18.
The goal of sustainability in buildings can only hope to be realised if buildings are designed to both conserve and generate energy. The Solar Office at Doxford International is designed to minimise the use of energy while its external fabric is designed to replace such energy that is used. The recently completed building is now subject of a comprehensive monitoring programme. The programme covers both the performance of the 73 kWp photovoltaic installation and the environmental conditions within the building as a whole. Hour by hour findings are posted on a dedicated web site. Photovoltaics could have the same impact on building form and layout as the invention of the passenger lift at the end of the last century.  相似文献   

19.
液压系统常见的故障诊断及处理   总被引:2,自引:0,他引:2  
任何工程机械式液压设备使用时出现故障是不可避免的。但是怎样确定故障的原因及找到好的解决方法,这是使用者最关心的问题。讲述了液压系统常见的故障及其排除方法。  相似文献   

20.
In this paper, an integrated process using photovoltaic power to harvest microalgae by electro-flocculation (EF) and hydrogen recovery is presented. It is mainly favorable in regions with high solar radiation. The electro-flocculation efficiency (EFE) of Chlorella pyrenoidosa microalgae was investigated using various types of electrodes (aluminum, iron, zinc, copper and a non-sacrificial electrode of carbon). The best results regarding the EFE, and biomass contamination were achieved with aluminum and carbon electrodes where the electrical energy demand of the process for harvesting 1 kg of algae biomass was 0.28 and 0.34 kWh, respectively, while the energy yield of harvested hydrogen was 0.052 and 0.005 kWh kg?1, respectively. The highest harvesting efficiency of 95.83 ± 0.87% was obtained with the aluminum electrode.The experimental hydrogen yields obtained were comparable with those calculated from theory. With a low net energy demand, microalgae EF may be a useful and low-cost technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号