首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
利用耦合路径通量分析和敏感性分析的方法对Jet-A型航空煤油在航空发动机燃烧室工况下的燃烧反应机理进行了简化。选用POSF-4658的燃烧反应机理(1607组分、6633机理)替代Jet-A型航空煤油在航空发动机燃烧室工况下的详细的燃烧反应机理。将燃烧室工况作为简化过程的初始条件,分析得到了替代Jet-A的简化机理(122组分、331机理)。通过对替代Jet-A简化反应机理、Jet-A详细反应机理、C_(13)H_(28)机理、五步机理与实验值的比较分析可发现,得到的替代Jet-A的简化机理能够反映Jet-A型燃料主要的燃烧特性。利用国际上常用的Jet-A机理计算的绝热火焰温度、点火延迟时间及层流火焰速度与本研究提出的简化的计算值进行比较。结果表明,本研究提出的简化机理具有较高的精确度,简化机理计算得到的点火延迟时间、绝热火焰温度、层流火焰速度与详细机理计算结果的平均相对误差分别为1.2%、3.3%、3.7%。替代Jet-A简化反应机理提供了可用于航空发动机燃烧室模拟仿真的化学反应动力学模型。  相似文献   

2.
利用定容燃烧弹和高速纹影摄像系统,研究了不同压力和温度下的2-甲基四氢呋喃-空气混合气的球形扩张火焰.使用了非线性方法对试验数据进行处理,最终得到了初始压力为0.1~0.4 MPa、初始温度为373~453 K及当量比为0.7~1.6的无拉伸火焰传播速度、层流燃烧速度和马克斯坦长度等层流燃烧特性,并使用详细反应机理进行了化学动力学分析.2-甲基四氢呋喃的无拉伸火焰传播速率和层流燃烧速度都在当量比为1.1左右达到峰值.随着初始温度的升高和初始压力的降低,无拉伸火焰传播速率和层流燃烧速度有大幅度的提升.使用反应动力学机理得到的计算值与试验值相吻合.在初始压力为0.4 MPa的试验中观测到了火焰面的不稳定现象,大当量比时的马克斯坦长度很小,流体力学不稳定性也随压力上升而大幅度升高.通过化学动力学分析,小分子物质之间的反应对燃烧过程起到了主要影响.燃料消耗最多的路径是通过在2、5号位脱氢,从而在氧化过程中产生了较高含量的乙烯、丙烯等中间产物.  相似文献   

3.
通过拓展层流火焰消耗速度的概念,将其定义与反应进程变量(progress variable)的定义相结合,给出了一个积分层流燃烧速度的广义定义。在准一维稳态系统中,分析了积分层流燃烧速度,以及其与未燃气体的位移速度和已燃气体的位移速度之间的关系。对甲烷-空气和丙烷-空气拉伸层流预混火焰在常温常压下进行了数值计算,研究了在不同当量比下,火焰拉伸对层流燃烧速度的影响,并得出了马克斯坦长度。对基于通过火焰前锋放热率的积分层流燃烧速度和基于燃料消耗率的积分层流燃烧速度进行了比较。结论表明低拉伸火焰的马克斯坦数与渐进分析一致,也与球形火焰获得的实验数据吻合。  相似文献   

4.
本文基于含颗粒甲烷燃烧详细化学反应动力学机理Gri-Mech3.0,采用层流预混火焰速度计算模型计算了含颗粒甲烷空气层流预混燃烧过程。通过对比层流火焰燃烧速度曲线,分析了温度和当量比对燃烧速度的影响,且对计算结果进行敏感性分析。研究结果表明,颗粒存在降低了火焰的燃烧速度,且温度越高,燃烧速度降低的越明显,而燃烧速度变化量随当量比的增加则先增大后减小。  相似文献   

5.
合成气的自点火延迟时间是预混器设计的关键参数之一,合成气富含大量的H2,因此自点火延迟时间要比常规燃料短很多,预混段过长将会导致自点火的危险。目前燃气轮机条件下的合成气自点火延迟的实验数据仍然很少,且尚未出现一种可以准确预测低温高压下合成气自点火延迟时间的化学反应机理。主要分析了温度、压力、当量比、氧含量、氢含量五大因素对自点火延迟时间的影响,并且修正了GRI3.0、Song等机理来模拟低温反应中的扰动因素影响,得到了较好的结果,同时还在Walton经验公式的基础上做了一定修改,使之与目前存在的数据更为接近。  相似文献   

6.
建立了考虑空气冷却的燃气轮机系统的变工况模型,对掺氮燃烧方式和纯氢燃烧方式下燃气轮机的变工况性能进行了计算和分析.利用Chemkin中基于氢气燃烧机理的燃烧模型,对2种燃烧方式下燃烧室内的燃烧特性进行了计算和分析,比较了燃烧区流体速度、层流火焰速度、点火延迟时间和NOx排放量.结果表明:采用纯氢燃烧方式的燃气轮机在扭矩裕度、喘振裕度和透平出口温度三方面的变工况性能都更优,但燃烧室内面临更高的回火可能性和NOx排放量.  相似文献   

7.
采用带误差传播的直接关系图法、全物种敏感性分析和人工神经网络(ANN)联合方法,以点火延迟时间和CO摩尔分数为优化目标,通过对甲烷富氧燃烧详细机理USC mech2.0的简化和优化,提出了基于人工神经网络的甲烷富氧燃烧优化机理(ANN-OMOC)。甲烷富氧燃烧模拟计算和对比分析的结果表明:相比于甲烷富氧燃烧简化机理FSSA的预测误差,优化机理ANN-OMOC对点火延迟时间、层流火焰速度的预测误差分别从2.53%、24.38%降到0.50%、14.41%;与甲烷富氧燃烧的简化机理DRGEP和FSSA相比,优化机理ANN-OMOC对点火延迟时间、OH摩尔分数峰值和CO摩尔分数峰值的预测结果最佳,其相对误差均在10%以下。  相似文献   

8.
为了解天然气掺氢对贫预混燃气轮机性能的影响,采用Chemkm-pro研究了燃料的化学反应动力学 特性,对比了不同当量比、掺氢比下的绝热火焰温度、层流火焰传播速度及点火延迟时间,结果表明掺氢能缩 短燃料点火延迟时间,增加绝热火焰温度及提高火焰传播速度。进一步以天然气塔式同轴分级燃烧室为研 究对象,研究了掺氢比对燃烧室燃烧场分布及燃烧效率、总压损失系数、温度分布不均匀度、一氧化碳及氮氧 化物排放量等性能参数的影响。结果表明,随着掺氢比的增加,燃烧效率上升,总压损失系数增加,温度分布 不均匀度下降,一氧化碳排放量下降,氮氧化物排放量增加。掺氢比在35%时燃烧室发生回火。在30% ~ 35%掺氢比范围内,燃烧室性能参数变化较大。其中,总压损失系数增幅为24. 74%,温度分布不均匀度降幅 为31.11%,氮氧化物排放量增幅为416.12%。  相似文献   

9.
热流量法成功应用在高压(0.5 MPa)下甲烷稀释气的绝热无拉伸层流火焰速度的测量.针对当量比为0.6~1.6、不同含氧量和固定含氧量时不同CO_2稀释度的火焰速度进行了实验和动力学探究.模拟采用GRIMech和HP-Mech两个反应机理,在不同压力下均给出了十分吻合实验值的预测结果.层流火焰速度的相对增量独立于当量比和压力的变化.总反应级数随氧含量提高和CO_2稀释度降低而增大,相同的绝热火焰温度的总反应级数相近.在不同稀释度情况下CO_2对层流火焰速度的热扩散贡献在50%以上,且随着压力提高,热扩散贡献减小而化学反应贡献增加.  相似文献   

10.
在密闭燃烧容器中对常温、常压环境下的生物质燃气预混层流燃烧特性进行了实验研究,研究了不同燃气组分、不同当量比对生物质燃气预混层流火焰传播速度、火焰表面拉伸率和层流燃烧速度的影响规律。研究结果表明:发酵法制取的生物质燃气中甲烷含量越高,其层流火焰传播速度就越快;相同尺寸的火焰锋面上拉伸率越大,层流燃烧速度则越快;随着当量比的增大,层流火焰传播速度、层流燃烧速度呈现出先增大后减小的趋势。  相似文献   

11.
Skeletal and reduced reaction mechanisms replicate the behavior of full reaction mechanism within the band/regime of optimization criteria and provide specific computational advantages for resource-intense multi-physics domain analysis. The current work reports on the development of skeletal and reduced mechanisms for bio-derived Producer gas and Hydrogen-rich Syngas by using GRI Mech 3.0 mechanism. The mechanisms are generated adopting graph-based approach, and timescale analysis are validated for laminar flame speed based on experiments in the equivalence ratios regime of 0.6–1.6 adopting a flame tube apparatus built in-house to mimic a freely propagating double infinity domain premixed reactor. Extending the analysis, the reduced/skeletal mechanisms are numerically validated for ignition delay time, major species profile, and volumetric heat release rate with validity established within the 5% tolerance limit. The current work is a first of its kind to propose optimized mechanism for compositions typical of bio-derived Producer gas and Syngas.  相似文献   

12.
To achieve comprehensive prediction of ammonia combustion in terms of flame speed and ignition delay time, an improved mechanism of ammonia oxidation was proposed in this work. The present model (UT-LCS) was based on a previous work [Song et al., 2016] and improved by relevant elementary reactions including NH2, HNO, and N2H2. The model clearly explained reported values of laminar flame speed and ignition delay time in wide ranges of equivalence ratio and pressure. This suggests that NH2, HNO, and N2H2 reactivities play a key role to improve the reaction mechanism of ammonia oxidation in the present model. The model was also applied to demonstrate NH3/H2/air combustion. The present model also appropriately predicted the laminar flame speed of NH3/H2/air combustion as a function of equivalence ratio. Using the model, we discussed the reduction of NO concentration downstream and H2 formation via NH3 decomposition in NH3/H2 fuel-rich combustion. The results provide suggestions for effective combustion of NH3 for future applications.  相似文献   

13.
The laminar flame speed of syngas (CO:H2 = 1:1)/air premixed gas in a wide equivalence ratio range (0.6–5) and initial temperature (298–423 K) was studied by Bunsen burner. The results show that the laminar flame speed first increases and then decreases as the equivalence ratio increasing, which is a maximum laminar flame speed at n = 2. The laminar flame speed increases exponentially with the increase of initial temperature. For different equivalent ratios, the initial temperature effects on the laminar flame speed is different. The initial temperature effects for n = 2 (the most violent point of the reaction) is lower than others. It is found that H, O and OH are affected more and more when the equivalence ratio increase. When the equivalence ratio is far from 2, the reaction path changes, and the influence of initial temperature on syngas combustion also changes. The laminar flame speed of syngas is more severely affected by H + O2 = O + OH and CO + OH = CO2 + H than others, which sensitivity coefficient is larger and change more greatly than others when the initial temperature and equivalence ratio change. Therefore, the laminar flame speed of syngas/air premixed gas is affected by the initial temperature and equivalence ratio. A new correlation is proposed to predict the laminar flame speed of syngas (CO:H2 = 1:1)/air premixed gas under the synergistic effect of equivalence ratio and initial temperature (for equivalence ratios of 0.6–5, the initial temperature is 298–423 K).  相似文献   

14.
The kinetic characterization of the H2/CO system in presence of nitrogen components was systematically revised in the first note of this work [Frassoldati A, Faravelli T, Ranzi E. The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 1: detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds. Int J Hydrogen Energy; 2007, in press]. This second note analyses three different turbulent non-premixed syngas flames by using different approaches such as the Eddy dissipation (ED) the Eddy dissipation concept (EDC) and steady laminar flamelets (SLF) model.  相似文献   

15.
The aim of this study is to find a reduced mechanism that accurately represents chemical kinetics for lean hydrogen combustion at elevated pressures, as present in a typical gas turbine combustor. Calculations of autoignition, extinction, and laminar premixed flames are used to identify the most relevant species and reactions and to compare the results of several reduced mechanisms with those of a detailed reaction mechanism. The investigations show that the species OH and H are generally the radicals with the highest concentrations, followed by the O radical. However, the accumulation of the radical pool in autoignition is dominated by HO2 for temperatures above, and by H2O2 below the crossover temperature. The influence of H2O2 reactions is negligible for laminar flames and extinction, but becomes significant for autoignition. At least 11 elementary reactions are necessary for a satisfactory prediction of the processes of ignition, extinction, and laminar flame propagation under gas turbine conditions. A 4-step reduced mechanism using steady-state approximations for HO2 and H2O2 yields good results for laminar flame speed and extinction limits, but fails to predict ignition delay at low temperatures. A further reduction to three steps using a steady-state approximation for O leads to significant errors in the prediction of the laminar flame speed and extinction limit.  相似文献   

16.
This work aims to investigate numerically the catalytic combustion of a catalytically stabilized combustor. The numerical model treated a catalytic channel deposited with Pt and used a plug model of laminar, one‐dimensional, and steady‐state flow. The predicted conversions of mixture and ignition temperatures of surface reaction agreed well with the measured data when a multi‐step mechanism was used for the CH4 surface reaction over Pt. The flame speed of a mixture supported by catalytic surface reaction was found to increase compared with a mixture without a catalytic combustion. CO mole fractions were analysed for three cases—gas reaction, surface reaction, and gas reaction coupled with surface reaction. The case of solely gas reaction produced the most CO emission and the case of solely surface reaction generated the least CO emission. The position where flame ignites was also evaluated numerically. There was only a small difference between the measured and predicted results on the starting points of flame in the catalytic channel. As a result, the plug model was shown to model surface ignition very well, however, it did not predict well the position of flame ignition. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
This work experimentally investigates the effect of the presence of water vapor on the laminar flame speeds of moist syngas/air mixtures using the counterflow twin-flame configuration. The experimental results presented here are for fuel lean syngas mixtures with molar percentage of hydrogen in the hydrogen and carbon monoxide mixture varying from 5% to 100%, for an unburned mixture temperature of 323 K, and under atmospheric pressure. At a given equivalence ratio, the effect of varying amount of water vapor addition on the measured laminar flame speed is demonstrated. The experimental laminar flame speeds are also compared with computed values using chemical kinetic mechanisms reported in the literature. It is found that laminar flame speed varies non-monotonically with addition of water for the carbon monoxide rich mixtures. It first increases with increasing amount of water addition, reaches a maximum value, and then decreases. An integrated reaction path analysis is further conducted to understand the controlling mechanism responsible for the non-monotonic variation in laminar flame speed due to water addition. On the other hand, for higher values of H2/CO ratio the laminar flame speed monotonically decreases with increasing water addition. It is shown that the competition between the chemical and thermal effects of water addition leads to the observed response. Furthermore, reaction rate sensitivity analysis as well as binary diffusion coefficient sensitivity analysis are conducted to identify the possible sources of discrepancy between the experimental and predicted values. The sensitivity results indicate that the reaction rate constant of H2 + OH = H2O + H is worth revisiting and refinement of binary diffusion coefficient data of N2–H2O, N2–H2, and H2–H2O pairs can be considered.  相似文献   

18.
In the present study, Reynolds-Averaged Navier-Stokes simulations together with a novel flamelet generated manifold (FGM) hybrid combustion model incorporating preferential diffusion effects is utilised for the investigation of a hydrogen-blended diesel-hydrogen dual-fuel engine combustion process with high hydrogen energy share. The FGM hybrid combustion model was developed by coupling laminar flamelet databases obtained from diffusion flamelets and premixed flamelets. The model employed three control variables, namely, mixture fraction, reaction progress variable and enthalpy. The preferential diffusion effects were included in the laminar flamelet calculations and in the diffusion terms in the transport equations of the control variables. The resulting model is then validated against an experimental diesel-hydrogen dual-fuel combustion engine. The results show that the FGM hybrid combustion model incorporating preferential diffusion effects in the flame chemistry and transport equations yields better predictions with good accuracy for the in-cylinder characteristics. The inclusion of preferential diffusion effects in the flame chemistry and transport equations was found to predict well several characteristics of the diesel-hydrogen dual-fuel combustion process: 1) ignition delay, 2) start and end of combustion, 3) faster flame propagation and quicker burning rate of hydrogen, 4) high temperature combustion due to highly reactive nature of hydrogen radicals, 5) peak values of the heat release rate due to high temperature combustion of the partially premixed pilot fuel spray with entrained hydrogen/air and then background hydrogen-air premixed mixture. The comparison between diesel-hydrogen dual-fuel combustion and diesel only combustion shows early start of combustion, longer ignition delay time, higher flame temperature and NOx emissions for dual-fuel combustion compared to diesel only combustion.  相似文献   

19.
The present work deals with the evaluation of a combustion model that has been developed, in order to simulate the power cycle of hydrogen spark-ignition engines. The motivation for the development of such a model is to obtain a simple combustion model with few calibration constants, applicable to a wide range of engine configurations, incorporated in an in-house CFD code using the RNG k? turbulence model. The calculated cylinder pressure traces, gross heat release rate diagrams and exhaust nitric oxide (NO) emissions are compared with the corresponding measured ones at various engine loads. The engine used is a Cooperative Fuel Research (CFR) engine fueled with hydrogen, operating at a constant engine speed of 600 rpm. This model is composed of various sub-models used for the simulation of combustion of conventional fuels in SI engines; it has been adjusted in the current study specifically for hydrogen combustion. The basic sub-model incorporated for the calculation of the reaction rates is the characteristic conversion time-scale method, meaning that a time-scale is used depending on the laminar conversion time and the turbulent mixing time, which dictates to what extent the combustible gas has reached its chemical equilibrium during a predefined time step. Also, the laminar and turbulent combustion velocity is used to track the flame development within the combustion chamber, using two correlations for the laminar flame speed and the Zimont/Lipatnikov approach for the modeling of the turbulent flame speed, whereas the (NO) emissions are calculated according to the Zeldovich mechanism. From the evaluation conducted, it is revealed that by using the developed hydrogen combustion model and after adjustment of the unique model calibration constant, there is an adequate agreement with measured data (regarding performance and emissions) for the investigated conditions. However, there are a few more issues to be resolved dealing mainly with the ignition process and the applicability of a reliable set of constants for the emission calculations.  相似文献   

20.
To address the need for reliable premixed laminar burning velocity and thickness information within the spark assisted compression ignition (SACI) combustion regime, a large dataset of simulated reaction fronts has been generated in this work. A transient one dimensional premixed laminar flame simulation was applied to isooctane–air mixtures using a 215 species chemical kinetic mechanism. The simulation was exercised over fuel–air equivalence ratios, unburned gas temperatures and pressures ranging from 0.1 to 1.0, 298 to 1000 K and 1 to 250 bar, respectively, a range that extends beyond that of previous researchers. Steady reaction fronts with burning velocities in excess of 5 cm/s could not be established under all of these conditions, especially when burned gas temperatures were below 1500 K and/or when characteristic reaction front times were on the order of the unburned gas ignition delay. Steady premixed laminar burning velocities were correlated using a modified two-equation form based upon the asymptotic structure of a laminar flame, which produced an average error of 2.5% between the simulated and correlated laminar burning velocities, with a standard deviation of 3.0%. Additional correlations were constructed for reaction front thickness and adiabatic flame temperature. The resulting premixed laminar burning velocity correlation showed good agreement with experiments and existing correlations within the spark-ignited (SI) regime. Analysis of the simulated characteristic reaction front times and ignition delays suggests that homogeneous SACI combustion is most useful under medium and high load operating conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号