首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
《能源学会志》2019,92(6):1821-1830
Freely-propagating laminar premixed n-heptane/air flames were modeled using the Lawrence Livermore National Laboratory (LLNL) v3.1 n-heptane mechanism and the PREMIX code. Numerical calculations were conducted for unburned mixture temperature range of 298–423 K, at elevated pressures 1–10 atm and equivalent ratio 0.6–1.6, and the changes of laminar burning velocity (LBV), adiabatic flame temperature (AFT), heat release rate (HRR), and concentration profiles of important intermediate species were obtained. The results show that the overall results of LBVs of n-heptane at different elevated temperatures, pressures, and equivalence ratios are in good agreement with available experimental results. However, at the initial temperature 353 K, the calculated values of LBVs at pressure 1 atm and the 10 atm deviate significantly from the experimental results. The sensitivity analysis shows that, similar to many other hydrocarbon fuels, the most sensitive reaction in the oxidation of n-heptane responsible for the rise of flame temperature promoting heat release is R1 H + O2<=>O + OH, and the reaction that has the greatest influence on heat release is R8 H2O + M<=>H + OH + M. In addition, when the initial temperature is 353, 398 and 423 K, the mole fractions of H, OH, and O increase rapidly around the flame front, while the mole fractions of C1C3 dramatically decreases, reflecting the intense consumption of the intermediate products at the reaction zone.  相似文献   

2.
The self-acceleration characteristics of a syngas/air mixture turbulent premixed flame were experimentally evaluated using a 10% H2/90% CO/air mixture turbulent premixed flame by varying the turbulence intensity and equivalence ratio at atmospheric pressure and temperature. The propagation characteristics of the turbulent premixed flame including the variation in the flame propagation speed and turbulent burning velocity of the syngas/air mixture turbulent premixed flame were evaluated. In addition, the effect of the self-acceleration characteristics of the turbulent premixed flame was also evaluated. The results show that turbulence gradually changes the radius of the premixed flame from linear growth to nonlinear growth. With the increase of turbulence intensity, the formation of a cellular structure of the flame front accelerated, increasing the flame propagation speed and burning speed. In the transition stage, the acceleration exponent and fractal excess of the turbulent premixed flame decreased with increasing equivalence ratio and increased with increasing turbulence intensity at an equivalence ratio of 0.6. The acceleration exponent was always greater than 1.5.  相似文献   

3.
Ammonia (NH3) is a carbon-free fuel that shows great research prospects due to its ideal production and storage systems. The experimental data of the laminar burning velocity of NH3/H2/air flame at different hydrogen ratios (XH2 = 0.1–0.5), equivalent ratios (φ = 0.8–1.3), initial pressures (P = 0.1–0.7 MPa), and initial temperatures (T = 298–493 K) were measured. The laminar burning velocity of the NH3/H2/air flame increased upon increasing the hydrogen ratios and temperature, but it decreased upon increasing the pressure. The equivalent ratio of the maximum laminar burning velocity was only affected by the proportion of reactants. The equivalence ratio value of the maximum laminar burning velocity was between 1.1 and 1.2 when XH2 = 0.3. The chemical reaction kinetics of NH3/H2/air flame under four different initial conditions was analyzed. The less NO maximum mole fraction was produced during rich combustion (φ > 1). The results provide a new reference for ammonia as an alternative fuel for internal combustion engines.  相似文献   

4.
The objective of this study is to investigate the impact of syngas composition by varying the H2/CO ratio (1:3, 1:1, and 3:1 by volume), the CO2 dilution (0%–40%), and methane addition (0%–40%) on laminar flame speed. Thus, laminar flame speeds of premixed syngas–air mixtures were measured for different equivalence ratios (0.8–2.2) and inlet temperatures (295–450 K) using the Bunsen-burner method. It was found that laminar flame speed increases with increasing H2/CO ratio, while CO2 dilution or CH4 addition decreased it. The location of the maximum flame speed shifts to richer mixtures with decreasing H2/CO ratio, while it shifts to leaner mixtures with the addition of CH4 due to its inherent slower flame speed. The location of the maximum flame speed is also shifted towards leaner mixtures with the addition of CO2 due to the preponderance of the reduction of the adiabatic flame temperature with increasing dilution. Comparison between experimental and numerical results shows a better agreement using a modified mechanism derived from GRI-Mech 3.0. A correlation, based on the experimental results, is proposed to calculate the laminar flame speed over a wide range of equivalence ratios, inlet temperatures, and fuel content.  相似文献   

5.
The effects of different initial temperatures (T = 300–500 K) and different hydrogen volume fractions (5%–20%) on the combustion characteristics of premixed syngas/air flames in rectangular tubes were investigated experimentally. A high-speed camera and pressure sensor were used to obtain flame propagation images and overpressure dynamics. The CHEMKIN-PRO model and GRI Mech 3.0 mechanism were used for simulation. The results show that the flame propagation speed increases with the initial temperature before the flame touches the wall, while the opposite is true after the flame touches the wall. The increase in initial temperature leads to the increase in overpressure rise rate in the early flame propagation process, but the peak overpressure is reduced. The laminar burning velocity (LBV) and adiabatic flame temperature (AFT) increase with increasing initial temperature. The increase in initial temperature makes the peaks of H, O, and OH radicals increase.  相似文献   

6.
In this study, the flame propagation characteristics of premixed natural gas–hydrogen–air mixtures were studied in constant volume combustion bomb by using the high-speed schlieren photography system. The flame radius, laminar flame propagation speed and the flame stretch rate were obtained under different initial pressure, temperature, equivalence ratios and hydrogen fractions. Meanwhile, the flame stability and their influencing factors were obtained by analyzing the Markstein length and the flame propagation schlieren photos under various combustion conditions. The results show that the stretched laminar propagation speed increases with the increase of the initial temperature and hydrogen fraction of the mixture, and will decreases with the increase of the initial pressure. Meanwhile, according to the Markstein length and the flame propagation pictures, the flame stability decreases with the increase of the temperature and hydrogen fraction, and the slight flaws occurred at the early stage; at larger flame radius, the flame stability is more sensitive to the variation of the initial temperature and hydrogen fraction than to that of initial pressure and equivalence ratio.  相似文献   

7.
Injecting hydrogen into the natural gas network to reduce CO2 emissions in the EU residential sector is considered a critical element of the zero CO2 emissions target for 2050. Burning natural gas and hydrogen mixtures has potential risks, the main one being the flame flashback phenomenon that could occur in home appliances using premixed laminar burners. In the present study, two-dimensional transient computations of laminar CH4 + air and CH4 + H2 + air flames are performed with the open-source CFD code OpenFOAM. A finite rate chemistry based solver is used to compute reaction rates and the laminar reacting flow. Starting from a flame stabilized at the rim of a cylindrical tube burner, the inlet bulk velocity of the premixture is gradually reduced to observe flashback. The results of the present work concern the effects of wall temperature and hydrogen addition on the flashback propensity of laminar premixed methane-hydrogen-air flames. Complete sequences of flame dynamics with gradual increases of premixture velocity are investigated. At the flame flashback velocities, strong oscillations at the flame leading edge emerge, causing broken flame symmetry and finally flame flashback. The numerical results reveal that flashback tendency increase with increasing wall temperature and hydrogen addition rate.  相似文献   

8.
This study investigates effects of initial temperatures and pressures on dilution limits of CO/H2/air mixtures by numerical simulation of one-dimensional laminar premixed flames of CO/H2/air mixtures (50%CO–50%H2). Maximum flame temperatures, laminar flame speeds, mass burning rates and flame thickness near the dilution limits are analyzed. Results reveal that the dilution limits are extended at the elevated initial temperatures. The laminar flame speeds and mass burning rates at the dilution limits increase with the elevation of initial temperature, however, the flame thickness at the dilution limits decreases with increasing pressures and increases slightly with elevated initial temperature. The decreased flame thickness renders the flamelet modeling more favorable for turbulent combustion at elevated pressure conditions. The ratio of the flame thickness to the reaction thickness and the Zeldovich number increase first and then decrease with increasing pressure, but the non-monotonic trend of ratio of flame thickness to reaction thickness with the increasing pressures is unnoticeable. Sensitivity analysis suggested that the non-monotonic trend of the Zeldovich number could be caused by the combined effects of following elementary reactions: H + O2 + M → HO2 + M, 2HO2 → H2O2 + O2 and H2O2 + M → 2OH + M.  相似文献   

9.
Syngas has been widely concerned and tested in various thermo-power devices as one promising alternative fuel. However, little is known about the turbulent combustion characteristics, especially on outwardly propagating turbulent syngas/air premixed flames. In this paper, the outwardly propagating turbulent syngas/air premixed flames were experimentally investigated in a constant-volume fan-stirred vessel. Tests were conducted on stoichiometric syngas with different hydrogen volumetric fractions (XH2, 10%–90%) in the ambience with different initial turbulence intensity (u'rms, 0.100 m/s~1.309 m/s). Turbulent burning velocity was taken as the major topic to be studied upon the multi-zone model in constant-volume propagating flame method. The influences of initial turbulent intensity and hydrogen volumetric fraction on the turbulent flame speed were analysed and discussed. An explicit correlation of turbulent flame speed was obtained from the experimental results.  相似文献   

10.
《Applied Thermal Engineering》2007,27(2-3):374-380
Experimental test for premixed laminar combustion of ethanol–air mixtures has been conducted in a constant volume combustion bomb. The laminar burning velocities of ethanol–air mixtures are determined over a wide range of equivalence ratio at elevated temperatures, by means of the measurements of spherically expanding flames using schlieren photography technique. The effect of flame stretch imposed at the flame front has been discussed and the Markstein lengths are deduced to characterize the stretch effect on flame propagation. Following a linear relation between flame speed and flame stretch, the unstretched laminar burning velocities of ethanol–air flames have been derived. Over the ranges studied, a power law correlation has been suggested for the unstretched laminar burning velocities as a function of initial temperature and equivalence ratio. The empirical correlation is also compared with those data available in the literature, and it is found that the discrepancies are acceptable.  相似文献   

11.
Preferential species diffusion is known to have important effects on local flame structure in turbulent premixed flames, and differential diffusion of heat and mass can have significant effects on both local flame structure and global flame parameters, such as turbulent flame speed. However, models for turbulent premixed combustion normally assume that atomic mass fractions are conserved from reactants to fully burnt products. Experiments reported here indicate that this basic assumption may be incorrect for an important class of turbulent flames. Measurements of major species and temperature in the near field of turbulent, bluff-body stabilized, lean premixed methane–air flames (Le = 0.98) reveal significant departures from expected conditional mean compositional structure in the combustion products as well as within the flame. Net increases exceeding 10% in the equivalence ratio and the carbon-to-hydrogen atom ratio are observed across the turbulent flame brush. Corresponding measurements across an unstrained laminar flame at similar equivalence ratio are in close agreement with calculations performed using Chemkin with the GRI 3.0 mechanism and multi-component transport, confirming accuracy of experimental techniques. Results suggest that the large effects observed in the turbulent bluff-body burner are cause by preferential transport of H2 and H2O through the preheat zone ahead of CO2 and CO, followed by convective transport downstream and away from the local flame brush. This preferential transport effect increases with increasing velocity of reactants past the bluff body and is apparently amplified by the presence of a strong recirculation zone where excess CO2 is accumulated.  相似文献   

12.
This paper reports experimental and numerical study of stability and combustion characteristics of premixed oxy-methane flames with hydrogen-enrichment (CH4–H2/O2–CO2 flames) in a model multi-hole burner for clean energy production in gas turbines. The combustor lean blow-out (LBO) limit was presented on an equivalence ratio (Ø) - hydrogen fraction (HF: volumetric fraction of H2 in a mixture of H2+CH4) map spanning over Ø-values of 0.1–1 and HF-values of 0–70% at fixed hole jet velocity and oxygen fraction (OF: volumetric fraction of O2 in a mixture of O2+CO2) of 5.2 m/s and 30%, respectively. The condition of the combustion chamber is assumed to be depicted by the corrugated premixed flame regime. The premixed turbulent flame was modeled using the reaction progress variable flame front topology approach with the Large Eddy Simulation (LES) technique. The recorded combustor stability maps showed great resistance of the micromixer burner technology to flashback, recommending its use for stable gas turbine operation. The results show that H2-enrichment widens the combustor operability limits (higher turndown ratio) by extending the LBO from Ø = 0.45 at HF = 0% down to Ø = 0.15 at HF = 70% with a slight reduction in the heat release factor by 0.1. The high reactivity and higher flame speed of H2 ensures the sustenance of flame at lower equivalence ratios. At high equivalence ratios, H2 addition enhances the reaction rates and makes both the primary and secondary reaction zones shorter and more intense. Increasing HF leads to increase in the Damköhler number (Da) and decrease in both the Karlovitz number (Ka) and flame thickness. The CO emission at the combustor outlet reduced significantly from 241 ppm at HF = 0% to 33.1 ppm at HF = 10%, then it increased back to 364 ppm at HF = 50%.  相似文献   

13.
The production of hydrogen and syngas from natural gas using a homogeneous charge compression ignition reforming engine is investigated numerically. The simulation tool used was CHEMKIN 3.7, using the GRI-3 natural gas combustion mechanism. This simulation was conducted on the changes in hydrogen and syngas concentration according to the variations of equivalence ratio, intake temperature, oxygen enrichment, engine speed, initial pressure, and fuel additives with partial oxidation combustion. The simulation results indicate that the hydrogen/syngas yields are strongly dependent on the equivalence ratio with maxima occurring at an optimal equivalence ratio varying with engine speed. The hydrogen/syngas yields increase with increasing intake temperature and oxygen contents in air. The hydrogen/syngas yields also increase with increasing initial pressure, especially at lower temperatures, yet high temperature can suppress the pressure effect. Furthermore, it was found that the hydrogen/syngas yields increase when using fuel additives, especially hydrogen peroxide. Through the parametric screening studies, optimum operating conditions for natural gas partial oxidation reforming are recommended at 3.0 equivalence ratio, 530 K intake temperature, 0.3 oxygen enrichment, 500 rpm engine speed, 1 atm initial pressure, and 7.5% hydrogen peroxide.  相似文献   

14.
The objective of this study is to investigate the impact of different fractions (0–0.05) of C6F12O addition on laminar flame speed of hydrocarbon syngas by varying the fuel/oxidizer equivalence ratio (0.6–1.2) using Bunsen burner method. The determination of the syngas composition comes from the venting gas of lithium-ion cell during thermal runaway. It is found that C6F12O is significantly more effective at stoichiometric and fuel-rich conditions compared to lean flames regardless of fuel species, which implies more suitable for syngas/air flame inhibition than CH4. The laminar flame speeds of syngas/air increased with lower concentration (<0.01) of C6F12O when equivalence ratio less than 0.67, while it decreased with arbitrary concentration of C6F12O at the condition of equivalence ratio not less than 0.67 due to the increased heat release rate by exothermic reaction involving C6F12O. The laminar flame speed was more sensitive to C6F12O addition at stoichiometric and fuel-rich conditions due to the inhibitory effect of substances containing fluorine. Comparison between experimental and numerical results shows a better agreement under fuel-lean conditions with lower C6F12O additions using a modified mechanism derived from USC Mesh II. Thermodynamic equilibrium calculations and sensitivity analyses are showed separately that the variation of flame radical concentrations is consistent with laminar flame speeds and the lean flames are more sensitive to the reactions containing fluorine compared to rich for syngas/air flame with C6F12O addition.  相似文献   

15.
The laminar burning velocities and Markstein lengths for the dissociated methanol–air–diluent mixtures were measured at different equivalence ratios, initial temperatures and pressures, diluents (N2 and CO2) and dilution ratios by using the spherically outward expanding flame. The influences of these parameters on the laminar burning velocity and Markstein length were analyzed. The results show that the laminar burning velocity of dissociated methanol–air mixture increases with an increase in initial temperature and decreases with an increase in initial pressure. The peak laminar burning velocity occurs at equivalence ratio of 1.8. The Markstein length decreases with an increase in initial temperature and initial pressure. Cellular flame structures are presented at early flame propagation stage with the decrease of equivalence ratio or dilution ratio. The transition positions can be observed in the curve of flame propagation speed to stretch rate, indicating the occurrence of cellular structure at flame fronts. Mixture diluents (N2 and CO2) will decrease the laminar burning velocities of mixtures and increase the sensitivity of flame front to flame stretch rate. Markstein length increases with an increase in dilution ratio except for very lean mixture (equivalence ratio less than 0.8). CO2 dilution has a greater impact on laminar flame speed and flame front stability compared to N2. It is also demonstrated that the normalized unstretched laminar burning velocity is only related to dilution ratio and is not influenced by equivalence ratio.  相似文献   

16.
Co-firing NH3 with H2/CO/syngas (SYN) is a promising method to overcome the low reactivity of NH3/air flame. Hence, this study aims to systematically investigate the laminar premixed combustion characteristics of NH3/air flame with various H2/CO/SYN addition loadings (0–40%) using chemical kinetics simulation. The numerical results were obtained based on the Han mechanism which can provide accurate predictions of laminar burning velocities. Results showed that H2 has the greatest effects on increasing laminar burning velocities and net heat release rates of NH3/air flame, followed by SYN and CO. CO has the most significant effects on improving NH3/air adiabatic flame temperatures. The H2/CO/SYN additions can accelerate NH3 decomposition rates and promote the generation of H and NH2 radicals. Furthermore, there is an evident positive linear correlation between the laminar burning velocities and the peak mole fraction of H + NH2 radicals. The reaction NH2 + NH <=> N2H2 + H and NH2 + NO <=> NNH + OH have remarkable positive effects on NH3 combustion. The mole fraction of OH × NH2 radicals positively affects the net heat release rates. Finally, it was discovered that H radicals play an important role in the generation of NO. The H2/CO/SYN additions can reduce the hydrodynamic and diffusional-thermal instabilities of NH3/air flame. The NH3 reaction pathways for NH3–H2/CO/SYN-air flames can be categorized mainly into NH3–NH2–NH–N–N2, NH3–NH2–HNO–NO(?N2O)–N2 and NH3–NH2(?N2H2)–NNH–N2. CO has the greatest influence on the proportions of three NH3 reaction routes.  相似文献   

17.
By using OH-PLIF technique, experiments were conducted for laminar Bunsen flame of premixed CO/H2/air mixtures with equivalence ratio ranging from 0.5 to 1.8. Reynolds number was varied from 800 to 2200, XH2 = H2/(H2+CO) in the mixture was varied from 20% to 100% to study the effects of both preferential diffusion and flame curvature on flame structures and laminar flame burning velocities. Results showed that the combined effects of preferential diffusion and curvature gave an interesting phenomenon of the flame OH radical distributions on high hydrogen content flames. Furthermore, with the increase of H2 fraction in fuel mixture, the effects of both preferential diffusion and flame curvature were increased. Interpretation of flame stretch effect on laminar burning velocity is also provided in this paper.  相似文献   

18.
Ignition delays were measured in a shock tube for syngas mixtures with argon as diluent at equivalence ratios of 0.3, 1.0 and 1.5, pressures of 0.2, 1.0 and 2.0 MPa and temperatures from 870 to 1350 K. Results show that the influences of equivalence ratio on the ignition of syngas mixtures exhibit different tendency at different temperatures and pressures. At low pressure, the ignition delay increases with an increase in equivalence ratio at tested temperature. At high pressures, however, an opposite behavior is presented, that is, increasing equivalence ratio inhibits the ignition at high temperature and vice versa at intermediate temperature. The affecting degree of equivalence ratio on ignition delay is different for each mixture at given condition, especially for the syngas with high CO concentration. Sensitivity analyses demonstrate that reaction H + O2 = O + OH (R1) dominates the syngas oxidation under all conditions. With the increase of CO mole fraction, reactions CO + OH = CO2 + H (R27) and CO + HO2 = CO2 + OH (R29) become more important in the syngas ignition kinetics. With the increase of pressure, the reactions related to HO2 and H2O2 play the dominate role. The opposite influence of equivalence ratio on ignition delay at high- and intermediate-temperatures is chemically interpreted through kinetic analyses.  相似文献   

19.
This paper presents experimental data on the flame structure of laminar premixed ammonia and ammonia/hydrogen flames at different equivalence ratios (φ = 0.8, 1.0 and 1.2) and the laminar flame speed of ammonia/hydrogen flames (φ = 0.7–1.5) at 1 atm. Experimental data were compared with modeling results obtained using four detailed chemical-kinetic mechanisms of ammonia oxidation. In general, all models adequately predict the flame structure. However, for the laminar burning velocity, this is not so. The main nitrogen-containing species present in the post-flame zone in significant concentrations are N2 and NO. Experimental data and numerical simulations show that the transition to slightly rich conditions enables to reduce NO concentration. Numerical simulation indicate that increasing the pressure rise also results into reduction of NO formation. However, when using ammonia as a fuel, additional technologies should be employed to reduce NO formation.  相似文献   

20.
Three-dimensional direct numerical simulation with detailed chemical kinetics of lean premixed CH4/air and H2/air flames at high Karlovitz numbers (Ka ∼ 1800) is carried out. It is found that the high intensity turbulence along with differential diffusion result in a much more rapid transport of H radicals from the reaction zone to the low temperature unburned mixtures (∼500 K) than that in laminar flamelets. The enhanced concentration of H radicals in the low temperature zone drastically increases the reaction rates of exothermic chain terminating reactions (e.g., H + O2+M = HO2 + M in lean H2/air flames), which results in a significantly enhanced heat release rate at low temperatures. This effect is observed in both CH4/air and H2/air flames and locally, the heat release rate in the low temperature zone can exceed the peak heat release rate of a laminar flamelet. The effects of chemical kinetics and transport properties on the H2/air flame are investigated, from which it is concluded that the enhanced heat release rate in the low temperature zone is a convection–diffusion-reaction phenomenon, and to obtain it, detailed chemistry is essential and detailed transport is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号