首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
太阳能热泵供热系统实验台的设计及误差分析   总被引:2,自引:0,他引:2  
开发新能源和节能是寻找能源出路的两大途径,太阳能热泵系统以其显著的节能性和环保性具有广阔的发展前景。介绍了太阳能热泵供热实验台集热器、蓄热器等设备的设计,分析了集热器集热效率的测试误差,指出太阳能热泵供热实验台测试数据准确、可靠,为太阳能热泵供热系统的设计、安装和运行提供了有价值的参考依据。  相似文献   

2.
为了研究太阳能-空气源热泵互补供热系统的关键参数,文章基于巴彦淖尔某办公建筑,利用Polysun软件建立太阳能-空气源热泵互补供热系统模型;然后,将供暖季模拟结果与文献实验数据进行对比分析,以验证该模型的正确性;最后,以ACSF为目标参数,采用正交试验法和极差分析法对太阳能-空气源热泵互补供热系统的4个关键参数进行正交优化分析。分析结果表明,对太阳能-空气源热泵互补供热系统进行两步优化后,该系统的年太阳能保证率由64.2%逐渐升高至80.2%,ACSF由550元逐渐降低至403元,降低了26.73%。  相似文献   

3.
通过分析多热源互补耦合供热现状,集中论述了燃气冷凝锅炉、热泵、太阳能和生物质气构成的多热源互补耦合低温供热系统的形式和特点,指出了未来供热的发展方向。  相似文献   

4.
介绍了太阳能与热泵联合干燥系统的组成与工作原理.通过理论分析与实验研究探讨了太阳能与热泵联合运行的优化匹配,当太阳能供热量能满足木材干燥所需热量时,由太阳能系统供热;否则由太阳能与热采联合供热;阴雨天和夜间由热泵供热.当太阳能送风温度低,但高于环境温度时,低温太阳能向热泵送风,可以提高热泵的供热系数和供热量.对应于一定的环境温度,太阳能向热泵送风有一个相匹配的最低温差.例如当环境温度为24℃时,通过理论和实验求得太阳能向热泵送风与环境温度间的最低送风温差分别为4℃和6℃.  相似文献   

5.
构建了一种太阳能-空气源热泵复合供热系统,在广东地区冬季的晴天和全阴天进行供暖供生活热水实验测试。针对办公建筑供暖供生活热水需求,定时间段供生活热水同时进行供暖实验。实验结果表明:晴天热泵相较于全阴天工况节电1.16 kW·h,供热效果优于全阴天工况,太阳能-空气源热泵复合供热性能相较于单独的空气源热泵更有显著优势;太阳能-空气源热泵复合系统供暖供生活热水期间,复合系统COP_(sys)平均值为4.71、波动范围在4.20~5.38,空气源热泵系统COP_(hp)平均值为4.60、波动范围在4.08~5.10。  相似文献   

6.
介绍了地热直供结合燃气吸收式热泵系统的工作原理。结合工程实例,对燃油锅炉和地热直供结合燃气吸收式热泵两种供热热源的技术和经济性进行了比较和分析。各采暖期的实际运行数据表明,采用地热直供结合燃气吸收式热泵作为供热热源具有明显的节能效果和经济效益。  相似文献   

7.
长春地区地下土壤导热系数低,长时间采用地源热泵来供暖,热泵的效率较低。通过对长春地区太阳能资源分布规律的分析,从技术性、经济性方面对太阳能辅助地源热泵供热与单独采用地源热泵供热进行比较。结果表明:太阳能辅助地源热泵供热方案效果良好、经济可行。因此,在长春地区,利用太阳能辅助地源热泵供热是完全可行的。  相似文献   

8.
直膨式太阳能热泵热水器及其热经济性分析   总被引:2,自引:0,他引:2  
介绍了直膨式太阳能辅助热泵热水器(DX-SAHPWH)的基本结构和工作原理.计算了直膨式太阳能辅助热泵热水器、空气源热泵热水器、太阳能热水器、电热水器和燃气热水器的运行能耗.分析了直膨式太阳能辅助热泵热水器的市场潜力、经济性以及社会效益.几种热水器比较结果表明,直膨式太阳能辅助热泵热水器能耗最小,运行费仅为电热水器的1/3,燃气热水器的1/2,空气源热泵热水器的415;与电热水器相比,使用直膨式太阳能辅助热泵热水器,户均年运行费可减少约1500元,2年左右即可回收额外的初投资.直膨式太阳能辅助热泵热水器与空气源热泵热水器的市场价格相当.由于其节能、环保、安全等,自身优势明显,预期该热水器应用前景广阔.  相似文献   

9.
太阳能热泵供热系统的实验研究   总被引:31,自引:5,他引:31  
开发新能源和节能是寻求能源出路的两大重要途径,太阳能热泵供热系统以其显著的节能性和环保性具有广阔的发展前景。该文简单介绍了太阳能热泵供热系统实验台及实验台测试系统的建设,着重介绍了太阳能热泵冬季供暖工况的实验研究,考察了系统的整体供热性能及主要设备的工作性能。根据实验研究的结果,提出了有关系统设计方面的参考数据。  相似文献   

10.
《可再生能源》2017,(12):1791-1797
文章搭建了热管式太阳能PV/T热泵系统,设计了供热和集热两种运行模式,并选取了日均太阳辐射强度和室外温度基本接近的两个工作日,对两种运行模式下,该系统的各项性能进行了实验研究。分析结果表明,供热模式下,热管式PV/T热泵系统日均热效率为33.9%,日均电效率为12.2%,比单一光伏发电系统的日均电效率提高了25.7%,日均COPth、日均COPpv/t分别为2.52,3.26;集热模式下,热管式PV/T热泵系统日均热效率为25.3%,日均电效率为12.9%,比单一光伏发电系统的日均电效率提高了14.2%,日均COPth、日均COPpv/t分别为1.82,2.33。因此,供热模式下热管式太阳能PV/T热泵系统的绝大部分性能优于集热模式。  相似文献   

11.
An analytical and computational model for a solar assisted heat pump heating system with an underground seasonal cylindrical storage tank is developed. The heating system consists of flat plate solar collectors, an underground cylindrical storage tank, a heat pump and a house to be heated during winter season. Analytical solution of transient field problem outside the storage tank is obtained by the application of complex finite Fourier transform and finite integral transform techniques. Three expressions for the heat pump, space heat requirement during the winter season and available solar energy are coupled with the solution of the transient temperature field problem. The analytical solution presented can be utilized to determine the annual variation of water temperature in the cylindrical store, transient earth temperature field surrounding the store and annual periodic performance of the heating system. A computer simulation program is developed to evaluate the annual periodic water and earth temperatures and system performance parameters based on the analytical solution. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
郑煜鑫  赵帅  李洁 《太阳能》2021,(2):36-43
以西安地区的某个房间为研究对象,采用TRNSYS软件针对该房间分别应用太阳能集热系统、空气源热泵系统及太阳能与空气源热泵复合式供暖系统进行供暖时的情况进行了分析。首先,建立了太阳能与空气源热泵复合式供暖系统的仿真模型,并对其正确性进行了实验验证;其次,对比分析了在3种运行模式下各个系统的运行特性;最后,以系统能耗及能效比(COP)等参数为指标,对太阳能与空气源热泵复合式供暖系统的性能进行了评价。结果表明:在整个供暖期内,太阳能与空气源热泵复合式供暖系统的总能耗为284.61kWh,其中,空气源热泵消耗的电能为264.10kWh;该复合式供暖系统的太阳能保证率为30.71%,平均COPc-sys为3.04,比单独采用空气源热泵系统进行供暖时的平均COPhp-sys提高了0.33,这表明太阳能与空气源热泵复合式供暖系统在西安地区具有较好的节能优势。这一研究结果为太阳能与空气源热泵复合式供暖系统在西安地区的应用及优化奠定了理论基础,对其推广应用具有重要意义。  相似文献   

13.
The energy saving obtainable with active solar heating and heat pumps has been studied for several years in the Northern climate of Finland. The studies deal mainly with small houses. A computer program is developed which calculates hour by hour the annual energy balance of different heating systems. The performance, of the heating systems are also measured in inhabited houses. The calculations show that the useful solar energy obtainable from the collector is 50–400 kWh/m2 annually depending on the system and the collector size. A heat pump in the system is very advantageous, because it keeps the heat losses low and the collector efficiency high. It approximately doubles the energy obtainable. The measurement results have not been as good as expected. The solar energy obtained from the collector has been 120–160 kWh/m2 annually. The main reasons for the low solar energy are design and equipment faults and the shading effects. The best energy saving device is the earth heat pump. It is also therefore very advantageous that the peak power demand decreases markedly. When the area of the earth pipes is large enough, energy may be extracted from earth through the whole year. The annual coefficient of performance is 2–3. Also a heat pump which extracts heat from exhaust air in dwelling houses has been very promising.  相似文献   

14.
There are two types of renewable energy widely used in China: air-source heat pump and compact all glass solar vacuum pipe water heating systems. To compare the performance of these supply systems, test systems were installed on two adjacent apartment buildings with the same structure, shape, and material. Both sets of equipment were placed in the same environment for the same 31-day period. The performances and performance parameters of the systems were systematically analyzed. The system energy consumption ratio of the compact all glass solar vacuum pipe water heating system was greater than that of the air-source system on 81% of the days in the study period. However, extension theory analysis showed that the weight coefficients for the performance parameters of the two systems were equivalent over the study period. The grey relational degree between the system performance and the parameters were also calculated. The grey correlation degrees of the compact all glass solar vacuum pipe water heating system's properties with outlet temperature, inlet temperature, environment temperature, solar radiation, and sunshine time were 0.69, 0.71, 0.68, 0.70, and 0.68; and the grey correlation degrees of the air source heat pump water heating system's properties with outlet temperature, inlet temperature, environment temperature, solar radiation, and hours of sunshine were 0.71, 0.73, 0.71, 0.65, and 0.72. Furthermore, multivariate regression equations were used to study the changes of other parameters when one of the single variables changes.  相似文献   

15.
Solar heat pump systems for domestic hot water   总被引:3,自引:0,他引:3  
Vapour compression heat pumps can upgrade ambient heat sources to match the desired heating load temperature. They can offer considerable increase in operational energy efficiency compared to current water heating systems. Solar heat pumps collect energy not only from solar radiation but also from the ambient air. They can operate even at night or in totally overcast conditions. Since the evaporator/collector operates at temperatures lower than ambient air temperature it does not need glazing or a selective coating to prevent losses. Currently, however, they are not used much at all in domestic or commercial water heating systems. In this paper comparison is made of a conventional solar hot water system, a conventional air source heat pump hot water system and a solar heat pump water heating system based on various capital city locations in Australia. A summary is given of specific electricity consumption, initial and operating costs, and greenhouse gas generation of the three systems dealt with in this paper. The ultimate choice of unit for a particular location will depend heavily on the solar radiation, climate and the local price paid for electricity to drive or boost the unit chosen.  相似文献   

16.
The main objective of the present study is twofold: (i) to analyze thermal loads of the geothermally and passively heated solar greenhouses; and (ii) to investigate wind energy utilization in greenhouse heating which is modeled as a hybrid solar assisted geothermal heat pump and a small wind turbine system which is separately installed in the Solar Energy Institute of Ege University, Izmir, Turkey. The study shows 3.13% of the total yearly electricity energy consumption of the modeled system (3568 kWh) or 12.53% of the total yearly electricity energy consumptions of secondary water pumping, brine pumping, and fan coil (892 kWh) can be met by using small wind turbine system (SWTS) theoretically. According to this result, modeled passive solar pre heating technique and combined with geothermal heat pump system (GHPS) and SWTS can be economically preferable to the conventional space heating/cooling systems used in agricultural and residential building heating applications if these buildings are installed in a region, which has a good wind resource.  相似文献   

17.
张兴科 《中外能源》2012,17(3):32-36
减少我国冬季采暖所造成的大气污染,降低供暖系统的能耗,节约能源一直是建筑节能追求的目标.目前太阳能光伏发电已经成为人类利用太阳能的最主要方式之一,地源热泵已被作为一项旨在解决建筑冷热源问题的新技术,日渐受到人们的重视.将光伏转换与热泵循环有机结合在一起,从而形成了太阳能光伏-地源热泵系统.该系统提高了光电转换和光热吸收效率,光电/光热综合利用,极大地提高了单位面积太阳辐照的利用效率,同时可提高热泵系统在寒冷地区运行的适用性;利用光电效应把太阳能中高能带区域的光能直接转化成电能,可大大提高太阳能的可用能效率;在增加能量储存装置和逆变器的条件下,可以使系统脱离公用电网运行,从而增加了系统的适用性和灵活性;与普通的空气源热泵相比,太阳能地源热泵具有较高的热性能,具有一机多用的功效;与建筑物相结合的太阳能热泵系统,可以增加建筑物的隔热效果,起到减少建筑物冷暖负荷的作用,同时可极大地减少环境污染.  相似文献   

18.
Direct hot water production consumes about 4% of the total energy use in Hong Kong, and about 20% when considering only the domestic sector. For water heating the energy sources are mostly town gas, liquefied petroleum gas and electricity. The use of heat pump or solar water heating, particularly the solar-assisted heat pump options, is not popular. In this paper, the potential application of a unitary type direct-expansion solar-assisted heat pump (DX-SAHP) system was examined. A numerical model of the DX-SAHP system was first introduced. From the simulation results with the use of the Typical Meteorological Year (TMY) weather data of Hong Kong, the system was found achieving a year-average coefficient of performance (COP) of 6.46, which is much better than the conventional heat pump system performance. The potential use of DX-SAHP therefore deserves further evaluation.  相似文献   

19.
In this paper, a solar combi-system which consists of solar collectors and a carbon dioxide heat pump is proposed and investigated through simulation and optimization. Performance analysis and comparison are primarily conducted to show the feasibility and reasonability of using a CO2 heat pump as an auxiliary heater under local weather conditions. Then, a system model with a test building in TRNSYS is developed for performance optimization. The most influential variables are identified using influence and sensitivity analyzes of single parameters. Subsequently, a multi-parameter optimization using the high-weight parameters is carried out to obtain a final design result. The simulated results of the optimized case show that the average coefficient of performance of the CO2 heat pump is 2.38, and the solar fraction of the system is 69.0% for the entire heating season. The time when a comfortable temperature level can be achieved in the indoor environment accounts for 81.6% of the entire heating season. Furthermore, the performance characteristics of the proposed system are evaluated in terms of the thermal balance, fraction of the thermal energy saving, feasibility of net zero energy, economic factor, and CO2 emissions reduction.  相似文献   

20.
The energy needs of a typical one-family house in the Thessaloniki area for heating, cooling and domestic hot water production are calculated. The calculations are based on the typical average daily consumption of hot water and on the degree-day method for heating and cooling. The results are finally translated into thermal energy consumption, assuming the typical Greek situation (heating with diesel oil boilers and conventional radiators, cooling with local air-to-air split-type heat pumps and hot water production with electric heaters). The same energy needs are assumed to be covered by a vertical closed loop ground heat exchanger combined with a water-to-water heat pump system with fan-coils for heating and cooling and a thermosyphonic solar system for domestic hot water production. The ground heat exchanger/heat pump system efficiency is determined using data from an existing and continuously monitored similar system installed in the broader area of Thessaloniki. The solar system load coverage is calculated using the f-chart method. The energy consumption of the renewable energy systems is calculated and compared to that of the conventional system. The results prove that significant energy savings can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号