首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current simulation tools used to analyze, design and size wind-hydrogen hybrid systems, have several common characteristics: all use manufacturer wind turbine power curve (obtained from UNE 61400-12) and always consider electrolyzer operating in nominal conditions (not taking into account the influence of thermal inertia and operating temperature in hydrogen production). This article analyzes the influence of these parameters. To do this, a mathematical wind turbine model, that represents the manufacturer power curve to the real behaviour of the equipment in a location, and a dynamic electrolyzer model are developed and validated. Additionally, hydrogen production in a wind-hydrogen system operating in “wind-balance” mode (adjusting electricity production and demand at every time step) is analyzed. Considering the input data used, it is demonstrated that current simulation tools present significant errors in calculations. When using the manufacturer wind turbine power curve: the electric energy produced by the wind turbine, and the annual hydrogen production in a wind-hydrogen system are overestimated by 25% and 33.6%, respectively, when they are compared with simulation results using mathematical models that better represent the real behaviour of the equipments. Besides, considering electrolyzer operating temperature constant and equal to nominal, hydrogen production is overestimated by 3%, when compared with the hydrogen production using a dynamic electrolyzer model.  相似文献   

2.
针对风力发电“弃风”电量耦合制氢问题,提出一种基于链式分配策略的风氢耦合系统。首先建立能表征弃风电量与质子交换膜电解槽主要特性的风氢耦合拓扑电路结构,围绕高降压比交错Buck变换器及其控制方法构建风氢耦合系统,并提出多堆质子交换膜电解槽风氢耦合系统链式功率分配策略。最后通过算例仿真验证该系统可提升弃风利用率和系统可靠性,可有效解决弃风电量水电解制氢耦合控制与功率分配问题。  相似文献   

3.
Three aspects of producing hydrogen via renewable electricity sources are analyzed to determine the potential for solar and wind hydrogen production pathways: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices. For renewables to produce hydrogen at $2 kg−1, using electrolyzers available in 2004, electricity prices would have to be less than $0.01 kWh−1. Additionally, energy requirements for hydrogen refueling stations are in excess of 20 GWh/year. It may be challenging for dedicated renewable systems at the filling station to meet such requirements. Therefore, while plentiful resources exist to provide clean electricity for the production of hydrogen for transportation fuel, challenges remain to identify optimum economic and technical configurations to provide renewable energy to distributed hydrogen refueling stations.  相似文献   

4.
When planning large-scale 100% renewable energy systems (RES) for the year 2050, the system capacity is usually oversized for better supply-demand matching of electrical energy since solar and wind resources are highly intermittent. This causes excessive excess energy that is typically dissipated, curtailed, or sold directly. The public literature shows a lack of studies on the feasibility of using this excess for country-scale co-generation. This study presents the first investigation of utilizing this excess to generate green hydrogen gas. The concept is demonstrated for Jordan using three solar photovoltaic (PV), wind, and hybrid PV-wind RESs, all equipped with Lithium-Ion battery energy storage systems (ESSs), for hydrogen production using a polymer electrolyte membrane (PEM) system. The results show that the PV-based system has the highest demand-supply fraction (>99%). However, the wind-based system is more favorable economically, with installed RES, ESS, and PEM capacities of only 23.88 GW, 2542 GWh, and 20.66 GW. It also shows the highest hydrogen annual production rate (172.1 × 103 tons) and the lowest hydrogen cost (1.082 USD/kg). The three systems were a better option than selling excess energy directly, where they ensure annual incomes up to 2.68 billion USD while having payback periods of as low as 1.78 years. Furthermore, the hydrogen cost does not exceed 2.03 USD/kg, which is significantly lower than the expected cost of hydrogen (3 USD/kg) produced using energy from fossil fuel-based systems in 2050.  相似文献   

5.
The capacity factor is an important wind turbine parameter which is ratio of average output electrical power to rated electrical power of the wind turbine. Another main factor, the AEP, the annual energy production, can be determined using wind characteristics and wind turbine performance. Lower rated power may lead to higher capacity factor but will reduce the AEP. Therefore, it is important to consider simultaneously both the capacity factor and the AEP in design or selecting a wind turbine. In this work, a new semi-empirical secondary capacity factor is introduced for determining a rated wind speed at which yearly energy and hydrogen production obtain a maximum value. This capacity factor is expressed as ratio of the AEP for wind turbine to yearly wind energy delivered by mean wind speed at the rotor swept area. The methodology is demonstrated using the empirical efficiency curve of Vestas-80 2 MW turbine and the Weibull probability density function. Simultaneous use of the primary and the secondary capacity factors are discussed for maximizing electrical energy and hence hydrogen production for different wind classes and economic feasibility are scrutinized in several wind stations in Kuwait.  相似文献   

6.
The average wind speed and wind power density of Taiwan had been evaluated at 10 m, 30 m and 50 m by simulation of mesoscale numerical weather prediction model (MM5). The results showed that wind energy potential of this area is excellent. Taiwan has offered funds to encourage the founding of offshore wind farms in this area. The purpose of this study is to make a high resolution wind energy assessment for the offshore area of Taiwan west coast and Penghu archipelago by using WAsP. The result of this study has been used to the relative financial planning of offshore wind farm projects in Taiwan. The basic inputs of WAsP include wind weather data and terrain data. The wind weather data was from a monitoring station located on a remote island, Tongi, because that all of weather stations in the area of Taiwan west coast are affected by urbanization. SRTM was selected to be used as terrain data and downloaded from CGIAR-CSI for voids problem. The coverage of considered terrain area in this assessment work is about 300 km × 400 km that made some difficulties to run wind energy assessment of the whole area with a high resolution of 100 m. So the interested area of this study is divided into 19 areas for the wind energy assessment and mapping. The assessment results show the Changhua area has best wind energy potential in the area of Taiwan west coast which power density is above 1000 W/m2 height and the areas of Penghu archipelago are above 1300 W. These results are higher than the expected from NWP. 180 of 3 MW wind turbines were used in the study of micro sitting in the Changhua area.The type and number of the wind turbines and the layout of the wind farm is similar to the prior study of Taipower Company for demonstrating the reliability of this study. The assessment result of average net annual energy production (AEP) of the wind farm is about 11.3 GWh that is very close to the prior study. The terrain effect is also studied. The average net annual energy production will decrease about 0.7 GWh if the wind turbines were moved eastward 3600 m closer to the coast because of terrain effect. As the same reason, the average net annual energy production would be increased to 11.392 GWh if the wind farm is moved westward 3600 m away from the coast.  相似文献   

7.
Currently, worldwide efforts are being made to replace fossil fuels with renewable energy to meet the goals of the Paris Agreement signed in 2015. Renewable energy, with solar and wind power as representative examples, focuses on hydrogen as a means of supplementing the intermittency in operation. Moreover, 17 advanced countries, including Australia and Europe, announced policies related to hydrogen, and Korea joined the ranks by announcing a roadmap to revitalize the hydrogen economy in 2019. As of 2020, the unit price of renewable energy in Korea is 0.1 $/kWh and 0.12 $/kWh for solar and wind power, respectively, which are more than five times higher than those of the world's best. The significant difference is due to the low utilization of power plants stemming from environmental factors. Consequently, securing the economic feasibility for the production of green hydrogen in Korea is difficult, and the evaluation of various policies is required to overcome these shortcomings. Currently, Korea's policy on renewable energy is focused on solar power, and despite the goal for a power generation of 57,483 GWh/year centered on offshore wind power by 2034, plans for utilization are lacking. By harnessing such energy, producing a percentage of the total green hydrogen required from the hydrogen economy roadmap can be realized, but securing economic feasibility may be difficult. Therefore, reinforcements in policies for the production of green hydrogen in Korea are required, and implementation of foreign policies for overseas cooperation in hydrogen production and import is necessary.  相似文献   

8.
Kazakhstan has long been regarded as a major exporter of fossil fuel energy. As the global energy sector is undergoing an unprecedented transition to low-carbon solutions, new emerging energy technologies, such as hydrogen production, require more different resource bases than present energy technologies. Kazakhstan needs to consider whether it has enough resources to stay competitive in energy markets undergoing an energy transition. Green hydrogen can be made from water electrolysis powered by low-carbon electricity sources such as wind turbines and solar panels. We provided the first resource assessment for green hydrogen production in Kazakhstan by focusing on three essential resources: water, renewable electricity, and critical raw materials. Our estimations showed that with the current plan of Kazakhstan to keep its water budget constant in the future, producing 2–10 Mt green hydrogen would require reducing the water use of industry in Kazakhstan by 0.6–3% or 0.036–0.18 km3/year. This could be implemented by increasing the share of renewables in electricity generation and phasing out some of the water- and carbon-intensive industries. Renewable electricity potential in South and West Kazakhstan is sufficient to run electrolyzers up to 5700 and 1600 h/year for wind turbines and solar panels, respectively. In our base case scenario, 5 Mt green hydrogen production would require 50 GW solar and 67 GW wind capacity, considering Kazakhstan's wind and solar capacity factors. This could convert into 28,652 tons of nickel, 15,832 tons of titanium, and many other critical raw materials. Although our estimations for critical raw materials were based on limited geological data, Kazakhstan has access to the most critical raw materials to support original equipment manufacturers of low-carbon technologies in Kazakhstan and other countries. As new geologic exploration kicks off in Kazakhstan, it is expected that more deposits of critical raw materials will be discovered to respond to their potential future needs for green hydrogen production.  相似文献   

9.
Hydrogen as an energy carrier can play a significant role in reducing environmental emissions if it is produced from renewable energy resources. This research aims to assess hydrogen production from wind energy considering environmental, economic, and technical aspect for the East Azerbaijan province of Iran. The economic assessment is performed by calculation of payback period, levelized cost of hydrogen, and levelized cost of electricity. Since uncertainty in the power output of wind turbines may affect the payback period, all calculations are performed for four different turbine degradation rates. While it is common in the literature to choose the wind turbine based on a single criterion, this study implements Multi-Criteria Decision-Making (MCDM) techniques for this purpose. The results of Step-wise Weight Assessment Ratio Analysis illustrates that economic issue is the most important criterion for this research. The results of Weighted Aggregated Sum Product Assessment shows that Vestas V52 is the most suitable wind turbine for Ahar and Sarab cities, while Eovent EVA120 H-Darrieus is a better choice for other stations. The most suitable location for wind power generation is found to be Ahar, where it is estimated to annually generate 2914.8 kWh of electricity at the price of 0.045 $/kWh, and 47.2 tons of hydrogen at the price of 1.38 $/kg, which result in 583 tons of CO2 emission reduction.  相似文献   

10.
The involvement of green hydrogen in energy transformation is getting global attention. This assessment examines the hydrogen production and its utilization potential in one of the hydropower-rich regions, Nepal under various demand growth and technology intervention scenarios by developing a power grid model of 52 nodes and 68 transmission lines operating at an hourly time-step. The model incorporates a grid-connected hydrogen storage system as well as charging stations for electric and hydrogen vehicles. The least-costly pathways for power grid expansion at the nodal and provincial levels are identified through optimization. The results show that 32 GW of installed capacity is required to meet domestic electricity demand and 14 GW more hydropower should be exploited to completely decarbonize the transport sector by 2050. For maintaining 50% shares of hydrogen vehicle in the transport sector and meet government electricity export targets, Nepal requires 5.7 GW, 12 GW and 23 GW of the additional electrolyzer, hydrogen storage tanks and storage-based hydropower capacities respectively. For a given electricity demand, introducing hydrogen systems can reduce the capacity requirements of hydro storage by storing surplus power generated from pondage run-of-the-river and run-of-the-river hydropower during the rainy season and using it in the dry season.  相似文献   

11.
Green hydrogen energy is a natural substitute for fuel-based energy and it increases a country's long-term energy safety. Pakistan has been a victim of a severe energy crisis for the past few decades. In this context, this research addresses green hydrogen generation and renewable energy supply (i.e., wind, solar, biomass, public waste, geothermal and small hydropower) as an alternate energy source in Pakistan. The assessment is carried out through a two-step framework (i.e., Fuzzy-AHP and non-parametric DEA). Results show that Pakistan has abundant renewable power capacity from wind, which the light-duty transport in the country can opt. Almost 4.89 billion gallons of fuel are consumed annually in Sindh, whereas Punjab uses up around 6.92 billion gallons of fuel annually, which need to be substituted with 1.63 billion kg and 2.31 billion kg of wind-produced hydrogen, respectively. It has been discovered that solar and wind energy attain the same criterion of weights (i.e., 0.070) in-line with the commercial potential criterion. Besides, wind-generated power is ideal for green hydrogen generation in Pakistan, and the subsequent choice for green hydrogen energy is small hydropower and solar, which are also good for green hydrogen generation in the country. Hence, this research offers a solid recommendation for the use of wind energy, which is ideal for the production of Green Hydrogen energy in the country.  相似文献   

12.
Globally, small islands below 100,000 inhabitants represent a large number of diesel based mini-grids. With volatile fossil fuel costs which are most likely to increase in the long-run and competitive renewable energy technologies the introduction of such sustainable power generation system seems a viable and environmental friendly option. Nevertheless the implementation of renewable energies on small islands is quite low based on high transaction costs and missing knowledge according to the market potential.Our work provides a global overview on the small island landscape showing the respective population, economic activity, energy demand, and fuel costs for almost 1800 islands with approximately 20 million inhabitants currently supplied by 15 GW of diesel plants. Based on these parameters a detailed techno-economic assessment of the potential integration of solar PV, wind power, and battery storage into the power supply system was performed for each island. The focus on solar and wind was set due to the lack of data on hydro and geothermal potential for a global island study. It revealed that almost 7.5 GW of photovoltaic and 14 GW of wind power could be economically installed and operated on these islands reducing the GHG-emissions and fuel consumption by approximately 50%. In total numbers more than 20 million tons of GHG emissions can be reduced by avoiding the burning of 7.8 billion liters of diesel per year. Cost savings of around 9 USDct/kWh occur on average by implementing these capacities combined with 5.8 GWh of battery storage. This detailed techno-economic evaluation of renewable energies enables policy makers and investors to facilitate the implementation of clean energy supply systems on small islands. To accelerate the implementation of this enormous potential we give specific policy recommendations such as the introduction of proper regulations.  相似文献   

13.
In order to make full use of renewable energy and improve the utilization of wind power, a new joint optimization scheme of the wind-hydrogen system coupled with transmission project is proposed in this paper, in which wind power is reasonably allocated for grid integration and for hydrogen production. Aiming at maximize the annul wind-hydrogen system benefit, the optimal sizes of wind power transmission project and hydrogen system are obtained under different hydrogen production modes, hydrogen trading modes and hydrogen demand levels. In addition, the penalty cost of wind curtailment and hydrogen supply shortage and the system environmental benefits are taken into account. Results show: during the long-term of insufficient of wind power, it is better to produce hydrogen using wind power and grid-assisted power to avoid hydrogen supply shortage; considering the future increase of hydrogen demand, the optimal supply number of hydrogen refueling stations in the wind-hydrogen system is two. Also, the low utilization of fuel cells means that the benefit from regeneration cannot offset the high cost, which leads to the abnegation of fuel cells in the wind-hydrogen system.  相似文献   

14.
This paper analyses the wind speed of some major cities in province of Yazd which is located in central part of Iran. Also, the feasibility study of implementing wind turbines to take advantage of wind power is reviewed and then the subject of wind speed and wind potential at different stations is considered. This paper utilized wind speed data over a period of almost 13 years between 1992 and 2005 from 11 stations, to assess the wind power potential at these sites. In this paper, the hourly measured wind speed data at 10 m, 20 m and 40 m height for Yazd province have been statically analyzed to determine the potential of wind power generation. Extrapolation of the 10 m data, using the Power Law, has been used to determine the wind data at heights of 20 m and 40 m. The results showed that most of the stations have annual average wind speed of less than 4.5 m/s which is considered as unacceptable for installation of the wind turbines. City of Herat has higher wind energy potential with annual wind speed average of 5.05 m/s and 6.86 m/s, respectively, at height of 10 m and 40 m above ground level (AGL). This site is a good candidate for remote area wind energy applications. But some more information is required, because the collected data for Herat is only for 2004. Cities of Aghda with 3.96 m/s, Gariz with 3.95 m/s, and Maybod with 3.83 m/s annual wind speed average at height of 10 m above ground level are also able to harness wind by installing small wind turbines. The Tabas and Bafgh sites wind speed data indicated that the two sites have lower annual wind speed averages between 1.56 m/s and 2.22 m/s at 10 m height. The monthly and annual wind speeds at different heights have been studied to ensure optimum selection of wind turbine installation for different stations in Yazd.  相似文献   

15.
Renewable energy-based hydrogen production plants can offer potential solutions to both ensuring sustainability in energy generation systems and designing environmentally friendly systems. In this combined work, a novel solar energy supported plant is proposed that can generate hydrogen, electricity, heating, cooling and hot water. With the suggested integrated plant, the potential of solar energy usage is increased for energy generation systems. The modeled integrated system generally consists of the solar power cycle, solid oxide fuel cell plant, gas turbine process, supercritical power plant, organic Rankine cycle, cooling cycle, hydrogen production and liquefaction plant, and hot water production sub-system. To conduct a comprehensive thermodynamic performance analysis of the suggested plant, the combined plant is modeled according to thermodynamic equilibrium equations. A performance assessment is also conducted to evaluate the impact of several plant indicators on performance characteristics of integrated system and its sub-parts. Hydrogen production rate in the suggested plant according to the performance analysis performed is realized as 0.0642 kg/s. While maximum exergy destruction rate is seen in the solar power plant with 8279 kW, the cooling plant has the lowest exergy destruction rate as 1098 kW. Also, the highest power generation is obtained from gas turbine cycle with 7053 kW. In addition, energetic and exergetic efficiencies of solar power based combined cycle are found as 56.48% and 54.06%, respectively.  相似文献   

16.
17.
The observed wind at a given site varies continuously as a function of time and season, increasing hub heights, topography of the terrain, prevailing weather condition etc. The quality of wind resource is one of the important site factors to be considered when assessing the wind potential of any location for any energy project. In this study, two wind energy analysis techniques are presented: the use of direct technique where the electrical power outputs of the wind turbines at a time t are estimated using the turbine power curve(s) and the use of statistical-based technique where the power outputs are estimated based on the developed site power curve(s). The wind resource assessment at Darling site is conducted using a 5-min time series weather data collected on a 10 m height over a period of 24 months. Because of the non-linearity of the site's wind speed and its corresponding power output, the wind resources are modeled and the developed site power curve(s) are used to estimate the long term energy outputs of the wind turbines for changing weather conditions. Three wind turbines rating of 1.3 MW, 1.3 MW and 1.0 MW were selected for the energy generation based on the gauged wind resource(s) at 50, 60 and 70 m heights, respectively. The energy outputs at 50 m height using the 1.3 MW WT were compared to the energy outputs at 60 m to determine the standard height for utility scale energy generation at this site. An additional energy generation of 190.71 MWh was available by deploying the same rated turbine at a 60 m height. Furthermore, comparisons were made between the use of turbine and site power curve for wind energy analysis at the considered heights. The results show that the analysis of the energy outputs of the WTs based on the site power curve is an accurate technique for wind energy analysis as compared to the turbine power curve. Conclusions are drawn on the suitability of this site for utility scale generation based on the wind resources evaluation at different heights.  相似文献   

18.
This study presents a techno-economic evaluation on hydrogen generation from a small-scale wind-powered electrolysis system in different power matching modes. For the analysis, wind speed data, which measured as hourly time series in Kirklareli, Turkey, were used to predict the electrical energy and hydrogen produced by the wind–hydrogen energy system and their variation according to the height of the wind turbine. The system considered in this study is primarily consisted of a 6 kW wind-energy conversion system and a 2 kW PEM electrolyzer. The calculation of energy production was made by means of the levelized cost method by considering two different systems that are the grid-independent system and the grid-integrated system. Annual production of electrical energy and hydrogen was calculated as 15,148.26 kWh/year and 102.37 kg/year, respectively. The highest hydrogen production is obtained in January. The analyses showed that both electrical energy and hydrogen production depend strongly on the hub height of wind turbine in addition to the economic indicators. In the grid-integrated system, the calculated levelized cost of hydrogen changes in the range of 0.3485–4.4849 US$/kg for 36 m hub height related to the specific turbine cost. The grid-integrated system can be considered as profitable when the excess electrical energy delivered by system sold to the grid.  相似文献   

19.
In the examined paper, a solar and wind energy supported integrated cycle is designed to produce clean power and hydrogen with the basis of a sustainable and environmentally benign. The modeled study mainly comprises of four subsystems; a solar collector cycle which operates with Therminol VP1 working fluid, an organic Rankine cycle which runs with R744 fluid, a wind turbine as well as hydrogen generation and compression unit. The main target of this work is to investigate a thermodynamic evaluation of the integrated system based on the 1st and 2 nd laws of thermodynamics. Energetic and exergetic efficiencies, hydrogen and electricity generation rates, and irreversibility for the planned cycle and subsystems are investigated according to different parameters, for example, solar radiation flux, reference temperature, and wind speed. The obtained results demonstration that the whole energy and exergy performances of the modeled plant are 0.21 and 0.16. Additionally, the hydrogen generation rate is found as 0.001457 kg/s, and the highest irreversibility rate is shown in the heat exchanger subcomponents. Also, the net power production rate found to be 195.9 kW and 326.5 kW, respectively, with organic Rankine cycle and wind turbine. The final consequences obtained from this work show that the examined plant is an environmentally friendly option, which in terms of the system's performance and viable, for electrical power and hydrogen production using renewable energy sources.  相似文献   

20.
Hydrogen has been recognized as the most promising future energy carrier. At present, industrial hydrogen production processes are not independent of traditional energy resources, which could easily cause secondary pollution. China has abundant wind energy resources. The total installed capacity of wind power doubled every year in the last five years, and reached 26 000 MW by the end of 2009, but over 9880 MW wind turbines were not integrated into grid because of the peak shaving restraint. In this paper, wind power is directly used in water-electrolytic process by some technical improvements, to design non-grid-connected wind power/water-electrolytic hydrogen production system. The system all works properly, based on not only the wind/grid complementary power supply but also the independent supply of simulation wind power. The large-scale fluctuation of current density has little impact on current efficiency and gas quality, and only affects gas output. The new system can break through the bottlenecks of wind power utilization, and explore a diversified development way of large-scale wind power, which will contribute to the development of green economy and low carbon economy in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号