首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
为分析、比较商用硝酸铵(AN)和自制非爆炸/不可还原农用硝酸铵(NEIFAN)的热稳定性,用热重(TA)-差热扫描量热(DTA)-微商热重(DTG)、差示扫描量热(DSC)和绝热量热(ARC)研究了AN和NEIFAN的晶转变化、热分解特性和绝热分解过程,得到了绝热分解温度与压力随时间、自加热速率与分解压力随温度的变化曲线,计算了绝热假零级分解反应动力学参数——表观活化能和指前因子。结果表明,与AN相比,NEIFAN在88℃左右的晶转峰消失,显示NEIFAN有更好的热物理稳定性。由TA-DTA-DTG和DSC曲线所得的NEIFAN的热分解峰温度和由ARC数据所得的NEIFAN的假零级绝热分解反应的表观活化能比AN的相应值高,表明NEIFAN比AN有更好的热稳定性。认为,NEIFAN的物理化学稳定性的提高应归因于NEIFAN中无机和有机添加剂的联合作用。  相似文献   

2.
利用动态差示扫描量热(DSC)实验初步研究了硝基胍的热分解特性,采用Kissinger和Ozawa法计算了其热分解活化能。运用中断回归实验研究了热履历对硝基胍热分解安全性的影响,并用等温DSC实验进行了验证。利用绝热量热仪(ARC)研究了硝基胍的绝热安全性,得到了其初始分解温度,温升速率。结果表明,硝基胍是熔融分解型含能材料,其热分解为自催化反应。热履历显著影响了硝基胍的热分解安全性,降低了其起始分解温度和峰温,使其在固态时就达到较高的热分解速率。在动态DSC实验中,其起始反应温度213.8~249.9℃,峰温215.0~255.2℃,表观活化能为111.6 k J·mol~(-1)和114.2 k J·mol~(-1)。在绝热实验中,其起始反应温度为170.6℃,最大温升速率为1.414℃·min~(-1)。  相似文献   

3.
为了研究氯化钾(KCl)对硝酸铵(AN)爆炸性能和热稳定性的影响,用溶液混合法和机械混合法制备了含KCl的改性AN。采用差示扫描量热仪(DSC)、绝热量热仪(ARC)、联合国隔板试验、克南试验对AN的爆炸性能和热稳定性能进行了研究。结果表明,用溶液混合法所得含10%KCl的改性AN的放热峰温度从286℃降低到250.84℃,而改性AN初始反应峰温度从204.33℃增加到220.17℃,显示KCl能促进AN的热分解过程而不影响AN热分解反应的第一步。爆轰试验表明,KCl能在一定程度上降低AN的热敏感度和传播爆轰的能力。溶液混合法与机械混合法相比,抑制AN爆轰所需KCl的添加量可降低20%。混合方法对AN的爆轰性能有着重要的影响。  相似文献   

4.
氯化钾对硝酸铵爆炸性能和热稳定性的影响(英)   总被引:1,自引:0,他引:1  
为了研究氯化钾(KCI)对硝酸铵(AN)爆炸性能和热稳定性的影响,用溶液混合法和机械混合法制备了含KCI的改性AN.采用差示扫描量热仪(DSC)、绝热量热仪(ARC)、联合国隔板试验、克南试验对AN的爆炸性能和热稳定性能进行了研究.结果表明,用溶液混合法所得含10% KCI的改性AN的放热峰温度从286℃降低到250.84℃,而改性AN初始反应峰温度从204.33℃增加到220.17 ℃,显示KCI能促进AN的热分解过程而不影响AN热分解反应的第一步.爆轰试验表明,KCI能在一定程度上降低AN的热敏感度和传播爆轰的能力.溶液混合法与机械混合法相比,抑制AN爆轰所需KCI的添加量可降低20%.混合方法对AN的爆轰性能有着重要的影响.  相似文献   

5.
为获得乌洛托品其热分解动力学参数,采用差示扫描量热仪(DSC)和绝热加速量热仪(ARC)对其热分解过程进行了测试。DSC结果表明,乌洛托品的热分解属于吸放热耦合的过程,其等温测试中的两个放热峰对应的表观活化能均为150 kJ·mol~(-1),利用AKTS软件计算得其最大温升速率到达时间为24 h,所对应的温度TD24为216.26℃。ARC测试结果表明,乌洛托品的起始分解温度为230.28℃,TD24为212.5℃,与基于等温DSC数据的预测结果(216.26℃)基本一致。  相似文献   

6.
用加速量热仪研究PBX-HKF的热稳定性   总被引:2,自引:0,他引:2       下载免费PDF全文
采用加速量热仪(ARC)研究了一种由HMX、苦味酸钾、增塑剂、粘结剂组成的新型PBX HKF炸药的热稳定性,得到了塑性炸药样品在绝热条件下热分解温度和压力随时间的变化曲线以及自热速率、分解气体产物压力随温度的变化曲线,分析了在绝热条件下热分解反应动力学,计算了表观活化能Ea为337. 32kJ·mol-1,指前因子A为9. 32E34s-1。结果表明所测试的PBX HKF具有良好的热稳定性。  相似文献   

7.
采用差示扫描量热仪DSC和绝热加速量热仪ARC,对比研究了双基推进剂SF、改性双基推进剂GHQ和单质RDX的热分解过程,并分析评估了GHQ推进剂的热危害性。DSC实验结果表明:GHQ推进剂起始分解温度为182.4℃,热分解明显分为双基组分和RDX分解两个过程,分解峰温为202.2℃和240.4℃,分别与双基推进剂SF、单质RDX分解峰温接近,说明双基组分与RDX混合后作用不激烈。ARC实验结果表明:GHQ推进剂在最危险状态(即绝热条件)下的起始分解温度为135.3℃,绝热温升为1 197.5℃,tMR为15.9min,单位质量产生气体最大压力为15.8MPa·g~(-1)。研究结果表明:添加RDX后,GHQ推进剂发生热自燃可能性较双基推进剂SF稍有提高,热危害性大大增强。  相似文献   

8.
采用加速量热仪(ARC)研究了ε-HNIW的热稳定性,得到了ε-HNIW样品在绝热条件下热分解温度和压力随时间的变化曲线,以及自热速率、分解气体产物压力随温度的变化曲线,分析了在绝热条件下热分解反应动力学,计算了表观活化能E 为256.28kJ/mol,指前因子为5.56×1025s-1.  相似文献   

9.
为研究高能量密度材料2,4,6-三氨基-3,5-二硝基吡啶-1-氧化物(TANPyO)的热分解性能和热稳定性,利用绝热加速量热仪(ARC)测量其在绝热条件下的热分解过程,获得了热分解的温升速率、温度和压力等随时间的变化关系以及温升速率、压力随温度的变化曲线。结果表明:TANPyO绝热分解主要有两个放热过程,其中第二过程温升速率升降幅度较大,为主要的热分解过程。TANPyO初始分解温度高达252.7℃,具有良好的热稳定性。根据温升速率方程和Arrhenius公式计算出TANPyO表观活化能、指前因子和反应热分别为476.96kJ·mol-1、6.920×1042 min-1和930.84J·g-1。  相似文献   

10.
利用原位粉末X射线衍射(XRD)和差式扫描量热分析(DSC)、热重分析(TG)研究了4,4'-联-1,2,4-三唑(BTz)的晶型转变、热行为和非等温分解反应动力学.结果表明:BTz的热稳定性较好,170℃附近发生晶型转变,274.6℃熔融后发生热分解,分解峰值温度Tp=290.0 ℃;原位XRD分析和DSC分析显示BTz的晶型转变可逆;借助不同升温速率的分解峰值温度,计算获得的Tp0=256.3℃,采用Kissinger法和Ozawa法求得BTz的分解反应表观活化能Ea分别是224.7,222.4 kJ·mol-1,指前因子A分别是6.31E+20 s-1和3.98E+20 s-1.  相似文献   

11.
池钰  刘渝  张晓玉  张勇  黄明  李鸿波 《含能材料》2012,20(6):697-700
利用原位粉末X射线衍射(XRD)和差式扫描量热分析(DSC)、热重分析(TG)研究了4,4’-联-1,2,4-三唑(BTz)的晶型转变、热行为和非等温分解反应动力学。结果表明:BTz的热稳定性较好,170℃附近发生晶型转变,274.6℃熔融后发生热分解,分解峰值温度Tp=290.0℃;原位XRD分析和DSC分析显示BTz的晶型转变可逆;借助不同升温速率的分解峰值温度,计算获得的Tp0=256.3℃,采用Kissinger法和Ozawa法求得BTz的分解反应表观活化能Ea分别是224.7,222.4 kJ.mol-1,指前因子A分别是6.31E+20 s-1和3.98E+20 s-1。  相似文献   

12.
采用绝热加速量热仪(ARC)研究了含有不同浓度的硫酸的过氧化甲乙酮(MEKPO)分解过程,得到了它们的绝热分解温度和压力随时间变化曲线。并通过热分解动力学原理,求得了MEKPO以及含1%H2SO4、3%H2SO4溶液的MEKPO分解反应的表观活化能和指前因子。  相似文献   

13.
采用等温差示扫描量热(DSC)和中断回扫法(动态DSC)以及绝热加速量热法(ARC),鉴别盐酸羟胺(HH)和N-甲基羟胺盐酸盐(NMHH)的热分解是否具有自催化分解特性,分析二者的热分解危险性。动态DSC及等温DSC结果均表明:HH和NMHH的热分解均具有自催化分解特性;10℃·min-1温升速率下,HH和NMHH的放热量分别为2284.85 J·g-1和2188.41 J·g-1,放热量较大。ARC结果显示:HH和NMHH起始分解温度分别为110.6℃和90.7℃,热分解均在30 min内分解完全,最大温升速率分别达到193.4℃·min-1和218.9℃·min-1,热分解剧烈。对确认有自催化分解特性的HH、NMHH、三硝基甲苯(TNT)、奥克托今(HMX)、黑索今(RDX)和过氧化苯甲酰(BPO),以及确认不具有自催化分解特性的过氧化苯甲酸叔丁酯(TBPB)、硝酸异辛酯(EHN)和过氧化二叔丁基(DTBP)的ARC数据对比分析,发现非自催化分解反应从检测到放热至最大温升速率的时间(t0-max)均远长于自催化分解反应对应时间,且热修正系数变化对该规律不产生影响,由此判断可以采用绝热量热数据t0-max鉴别物质热分解是否具有自催化分解特性。  相似文献   

14.
用差示扫描量热法(DSC),微量热仪和热重-微分热重分析(TG/DTG)研究了1-氨基-2-硝基胍(ANQ)的热分解行为、比热容和绝热至爆时间.结果表明,ANQ的热行为分为相连的两个剧烈放热分解过程.5 ℃·rmin-1下两个分解过程的峰温分别为192.5℃和196.2℃,总共的分解焓为-2075 J·g-1.第一分解阶段的表观活化能和指前因子分别为224.3 kJ·mol-1和1023.15 s-1.自加速分解温度和热爆炸临界温度分别为184.5℃和192.7℃.298.15 K时摩尔比热容为145.5 J·mol-1·K-1.估算的绝热至爆时间约为60 s,表明ANQ的热稳定性良好.  相似文献   

15.
用差示扫描量热法(DSC),微量热仪和热重-微分热重分析(TG/DTG)研究了1-氨基-2-硝基胍(ANQ)的热分解行为、比热容和绝热至爆时间。结果表明,ANQ的热行为分为相连的两个剧烈放热分解过程。5℃·min-1下两个分解过程的峰温分别为192.5℃和196.2℃,总共的分解焓为-2075J·g~(-1)。第一分解阶段的表观活化能和指前因子分别为224.3kJ·mol~(-1)和1023.15 s~(-1)。自加速分解温度和热爆炸临界温度分别为184.5℃和192.7℃。298.15K时摩尔比热容为145.5J·mol~(-1)·K~(-1)。估算的绝热至爆时间约为60s,表明ANQ的热稳定性良好。  相似文献   

16.
六硝基六氮杂异戊兹烷(CL-20)是一种十分重要的新型单质炸药,其热分解安全性一直备受关注。利用动态差示扫描量热(DSC)仪进行实验,初步研究了CL-20的热行为;利用中断回归法、瑞士方法研究了CL-20的自催化反应特性,并用等温DSC实验进行了验证;基于CL-20的动态DSC曲线数据,采用Friedman法求得其活化能Eα与ln\[Af(α)\]值随转化率α的变化曲线,并结合热平衡方程计算了其绝热诱导期TMRad. 结果表明:CL-20的起始分解温度为233.5~255.7 ℃,其分解反应为自催化反应,热履历显著降低了其起始分解温度和峰温;在反应的不同阶段,CL-20具有不同的活化能,其绝热诱导期8 h和24 h对应的温度TD8和TD24分别为162.3 ℃和152.8 ℃.  相似文献   

17.
为获得硝硫混酸中一硝基甲苯(MNT)的热分解信息,分析硝硫混酸对MNT热稳定性的影响,分别用差示扫描量热仪(DSC)和绝热加速量热仪(ARC)测试了MNT和含不同比例混酸MNT物料体系的热分解过程。DSC测试结果表明,混酸含量越高,MNT物料体系的起始分解温度越低;ARC测试结果显示,存在大量混酸时,MNT物料体系的起始分解温度会提前到150.7℃,比纯M NT提前了110℃左右;而最大温升速率到达时间为24 h,所对应的引发温度TD24由纯MNT的299℃降低到98℃。同时,混酸的存在也使得M NT物料体系分解的比放热量和绝热温升都略有增加。因此,硝硫混酸的存在使得M NT物料体系的热稳定性降低,热危险性增大。  相似文献   

18.
董军  欧江阳  朱林  李彬 《含能材料》2016,24(6):555-559
为了解端叠氮聚叠氮缩水甘油醚(GAPA)的热分解动力学和热安全性,采用差示扫描量热法(DSC)、热重法(TG)对GAPA进行了热分解特性研究。根据GAPA在升温速率为2,5,10,20℃·min~(-1)时放热峰温和分解深度,考察了GAPA热分解反应的表观活化能、指前因子和热分解动力学方程,计算出热力学参数和热安全性参数。结果表明,GAPA的热分解反应过程分为两个阶段,表观活化能EK为218.47 kJ·mol~(-1),指前因子A_K为1.06×10~(22)s~(-1),自发火温度T_(bpo)为506.55 K,自加速分解温度T_(SADT)为496.78 K,以及活化自由能(ΔG~≠)、活化焓(ΔH~≠)和活化熵(ΔS~≠)分别为132.76 kJ·mol~(-1)、214.34 kJ·mol~(-1)和164.21 J·mol~(-1)·K~(-1)。  相似文献   

19.
为了抑制硝酸铵在常压下随着温度变化晶型发生转变,提出了一种在使用温度范围内抑制或防止AN发生相转变的实现方案。该方法借助在硝酸铵中添加不同聚合物,采用差式扫描量热法(DSC)表征加入聚合物后硝酸铵的晶变现象。结果表明,聚对苯乙烯磺酸钠-丙烯酸十二酯-N,N-二甲基二烯丙基氯化铵改性的硝酸铵不出现Ⅲ-Ⅱ相变峰,在53℃左右的相变受到削弱。聚丙烯酸钾完全消除了硝酸铵的Ⅳ-Ⅲ相变峰,将其Ⅲ-Ⅱ相变峰提高到103.24℃。聚合物对AN相转变的影响在于其可加强氢键网络并阻碍AN分子中NO3-的转动。  相似文献   

20.
NH4NO3和NH4ClO4的绝热分解研究   总被引:13,自引:2,他引:11       下载免费PDF全文
用加速热量仪研究了硝酸铵和高氯酸铵的热分解过程,得到了它们的绝热分解温度和压力随时间的变化曲线,并分别计算了这两种物质的动力学参数表观活化能和指前因子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号