首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 762 毫秒
1.
采用高能球磨技术制备W-30%Cu(质量分数)纳米晶粉体,再通过球磨混粉的方法添加不同质量分数的纳米AlN颗粒,然后采用热压烧结法得到W-30Cu/x%AlN复合材料。研究并比较了纳米AIN的加入对材料组织结构、物理以及力学性能的影响。结果表明,W-30Cu/x%AlN复合材料都有较致密和均匀的组织结构,AlN的添加,细化了烧结体中W颗粒;纳米AlN颗粒的添加提高了复合材料的硬度,但是随着A1N纳米颗粒含量的增加,基体晶界上的增强相颗粒分布过多,而使材料的抗弯强度有所下降;少量纳米AlN颗粒(≤1%)的添加有利于W-Cu复合材料的热导率提高,随AIN添加量的增加,复合材料的电阻率升高,电导率下降。  相似文献   

2.
采用高能球磨技术制备W-30%Cu(质量分数)纳米晶粉体,再通过球磨混粉的方法添加不同质量分数的纳米AlN颗粒,然后采用热压烧结法得到W-30Cu/x%AlN复合材料。研究并比较了纳米AlN的加入对材料组织结构、物理以及力学性能的影响。结果表明,W-30Cu/x%AlN复合材料都有较致密和均匀的组织结构,AlN的添加,细化了烧结体中W颗粒;纳米AlN颗粒的添加提高了复合材料的硬度,但是随着AlN纳米颗粒含量的增加,基体晶界上的增强相颗粒分布过多,而使材料的抗弯强度有所下降;少量纳米AlN颗粒(≤1%)的添加有利于W-Cu复合材料的热导率提高,随AlN添加量的增加,复合材料的电阻率升高,电导率下降。  相似文献   

3.
采用粉末冶金方法制备高强高导铜合金基纳米复合材料(Cu/AlN),用光学显微镜、TEM和SEM等方法研究不同工艺条件如温度、压力、复压压力及复烧温度对复合材料组织与性能的影响。结果表明:烧结后的试样密度随压力、烧结温度的升高而增大;试样布氏硬度随复压制压力和烧结温度的升高而升高;试样布氏硬度开始随着纳米AlN颗粒的含量增加而升高,但当纳米AlN颗粒质量分数大于0.5%时,复合材料的布氏硬度开始下降。试样的抗弯强度随复压制压力和烧结温度的升高而提高。  相似文献   

4.
热压烧结AlN陶瓷   总被引:1,自引:0,他引:1  
以自蔓延高温合成(SHS)的AlN粉体为原料,以Y203-B20O-CaF2和YF3-B-CaF2系为烧结助剂,采用热压烧结工艺制备AIN陶瓷.结果表明,采用烧结助剂,在1750℃、压力为35 MPa、保温2 h的烧结条件下,可获得相对密度均98.8%、热导率为95W/(m·K)的AIN烧结体.通过对AlN试样断口的SEM分析可知AlN晶粒大多呈直接结合,晶界相较少,有少量气孔存在.对AlN陶瓷进行后续热处理可提高其热导率,这主要是由于后续热处理后AlN陶瓷的晶界比较干净、AlN晶粒间呈直接结合而晶界相呈孤岛状分布.  相似文献   

5.
用真空热压烧结法制备AlN/堇青石玻璃陶瓷复合材料。分析复合材料样品的相对密度、抗弯强度和断裂韧度与AlN含量及烧结温度的关系,并对其显微组织与力学性能进行研究。结果表明:样品的相对密度随AlN加入量的增加逐渐下降;样品的抗弯强度和断裂韧度随烧结温度的升高而增加,随AlN加入量的增加呈先升后降的变化趋势;当AlN体积分数为0.40时,复合材料样品的抗弯强度和断裂韧性达到最大值,分别为212 MPa和3.04 MPa.m^1/2。XRD分析表明:AlN与堇青石玻璃未发生化学反应,化学相容性好。断口形貌和压痕裂纹扩展路径的扫描电镜观察结果表明,复合材料的强化机制主要是载荷传递,增韧机制主要为裂纹的绕道偏转、分叉和钉扎与颗粒的拔出。  相似文献   

6.
采用粉末冶金方法制备高强高导铜合金基纳米复合材料(Cu/AlN),用光学显微镜、TEM和SEM等方法研究不同工艺条件如温度、压力、复压压力及复烧温度对复合材料组织与性能的影响。结果表明:烧结后的试样密度随压力、烧结温度的升高而增大;试样布氏硬度随复压制压力和烧结温度的升高而升高;试样布氏硬度开始随着纳米AlN颗粒的含量增加而升高,但当纳米AlN颗粒质量分数大于0.5%时,复合材料的布氏硬度开始下降。试样的抗弯强度随复压制压力和烧结温度的升高而提高。  相似文献   

7.
采用真空烧结、N2保护无压烧结、放电等离子烧结等方法对AlN粉末进行烧结,研究烧结方法对粉体烧结行为以及产物物相组成、微观形貌及热导率的影响。结果表明:真空烧结会显著降低AlN材料的脱氮分解温度,无法实现其致密化;而通过N2保护无压烧结和放电等离子烧结的方法均能得到结构致密、热导率较高的AlN陶瓷,其中后者的烧结温度更低、制得陶瓷样品的致密度和热导率更高,在1650℃保温10min即可烧结得到热导率为121.5W·m-1·K-1的AlN陶瓷。  相似文献   

8.
W-Cu复合材料因具有低膨胀系数、高强度及导电导热性能而广泛用作电子封装、电极、电触头和炮弹的罩壳等材料。W-Cu复合材料传统制备方法在致密化、微观组织的均匀性等方面难以兼顾,导致材料的导电导热性能不足,难以满足现代电子工业的要求。以W粉及W粉表面碳化得到的WC@W粉为原料,采用复合电镀技术成功制备了W-Cu和WC@W-Cu复合材料。结果表明,W-Cu复合材料表面粗糙,微观组织存在孔洞,而WC@W-Cu复合材料晶粒细化,微观结构组织均匀、致密。WC@W-Cu复合材料的W含量为43.6wt.%,硬度达205HV,相对密度为99.3%,电导率可达54.6MS/m。采用WC@W纳米粉,电镀制备出的WC@W-Cu复合材料不仅增加了W含量,明显提高了硬度,而且在相对密度和导电性方面也优于W-Cu复合材料。  相似文献   

9.
在亚共晶Al-4Si-0.45Mg合金中添加微量AlN,以改善合金的显微组织并提高其力学性能和导热性能。结果表明,未添加Sr和AlN的合金,其抗拉强度为167.3 MPa,伸长率为10%,热导率为149.5 W/(m·K);添加Sr后的抗拉强度为176.2 MPa,伸长率为20%,热导率为166.8 W/(m·K),抗拉强度和热导率分别提高了5.4%、11.6%;添加AlN后的合金抗拉强度为194.8 MPa,伸长率为16%,热导率为170.1 W/(m·K),抗拉强度和热导率分别提高了16.4%、13.8%。力学性能的提高主要与α-Al的晶粒细化、二次枝晶臂间距(SADS)的减小和Si的变质有关。加入Sr和AlN后,共晶Si由片状变成块状和球状,Sr变质后共晶Si的尺寸明显减少,且AlN变质后共晶Si的平均尺寸更小,说明热导率的提高主要与共晶Si相的形态变化有关。其机制为细小的Si使得电子通道增加,电子散射概率降低,平均自由程增加,从而提高了热导率。  相似文献   

10.
W-Cu复合材料因具有低膨胀系数、高强度及较好的导电导热性能而广泛用作电子封装、电极、电触头和炮弹的罩壳等材料。W-Cu复合材料传统制备方法在致密化、微观组织的均匀性等方面难以兼顾,导致材料的导电导热性能不足,难以满足现代电子工业的要求。本研究以W粉及W粉表面碳化得到的WC@W粉为原料,采用复合电镀技术制备了W-Cu和WC@W-Cu复合材料。结果表明,W-Cu复合材料表面粗糙,微观组织存在孔洞,而WC@W-Cu复合材料晶粒细化,微观结构组织均匀、致密。WC@W-Cu复合材料的W含量(质量分数)为43.6%,硬度(HV)达2050 MPa,相对密度为99.3%,电导率可达54.6MS/m。采用WC@W纳米粉,电镀制备的WC@W-Cu复合材料不仅增加了W含量,明显提高了硬度,而且在相对密度和导电性方面也优于W-Cu复合材料。  相似文献   

11.
采用粉末冶金方法制备高强高导铜合金基纳米复合材料(CuZr/AlN)。采用光学显微镜(OM)和高分辨率透射电镜(HRTEM)等方法研究不同烧结工艺对复合材料组织与性能的影响,研究固溶时效对CuZr/AlN力学性能的影响。结果表明:试样的组织致密,晶粒大小在0.2μm左右;试样的布氏硬度随着复压制压力和烧结温度的升高而升高;试样的布氏硬度开始随着锆含量的增加而升高,但当锆颗粒含量大于0.5%时,复合材料的布氏硬度开始降低。试样的抗弯强度随着复压制压力和烧结温度的升高而提高,抗弯强度在锆含量为在0.5%时最大。900°C固溶后的布氏硬度比固溶前的布氏硬度低,试样在500°C和600°C时效后,布氏硬度增加,在700°C发生过时效现象。  相似文献   

12.
研究添加元素Ni对W-Cu复合材料组织和性能的影响。利用预混粉、机械球磨和活化液相烧结法制备不同Ni含量W-Cu复合材料,采用电子扫描显微镜、X射线衍射仪、激光导热仪等对复合材料的显微组织、物相、热导率、热膨胀系数和硬度进行检测与分析。结果表明:当W-Cu复合材料中不添加Ni元素时,W颗粒团聚形成闭合孔隙,液相Cu无法有效填充孔隙,导致W-Cu组织分布不均匀。随着Ni含量逐渐增加,钨颗粒尺寸不断增大,Cu相将W颗粒包覆;当Ni含量增至5%时,Cu相分布呈网状结构,复合材料组织的均匀分布。在性能方面,随着Ni元素含量的增加,W-Cu复合材料的致密度从83.91%提高到95.59%,硬度由229HV提升至304HV,各温度下热导率和热膨胀系数均有所下降。  相似文献   

13.
针对AlN陶瓷难以烧结致密的特点,采用放电等离子烧结(Spark Plasma Sintering,SPS)技术,利用SPS过程中脉冲电流产生局部高温来加强扩散作用,促进颗粒间颈部接触点形成,并通过添加适量烧结助剂Sm2O3,在短时间内实现了AlN陶瓷的烧结致密化.重点研究了烧结助剂Sm2O3的加入量、烧结温度等工艺参数对AlN陶瓷致密化钩毯统潭鹊挠跋?研究发现Sm2O3的加入使AlN致密化过程提前,烧结温度降低;SPS制备的AlN陶瓷晶粒尺寸均匀一致,晶粒发育良好烧结过程中Sm2O3与AlN粉体表面的Al2O3膜层在晶界处形成Sm-Al-O化合物,该反应有效促进了AlN颗粒间的相互扩散和烧结体的致密,对于AlN晶格完整性的保留非常有利,使AlN烧结体获得了良好的导热性能,其热导率达到150W/(m·K).  相似文献   

14.
以AlN角形粉和AlN球形粉为填料,以PDMS为有机基体,制备不同固含量的导热复合材料,研究了AlN形态、AlN填充分数及粉体表面改性等对导热复合材料粘度及热导率的影响。研究结果表明,与角形AlN粉体相比,球形AlN粉体可显著降低复合材料的粘度,因而有利于获得更高的填充分数和更大的复合热导率。利用KH570对AlN粉体进行表面改性,有利于降低界面热阻,提高复合热导率,改性浓度(质量分数)为2.0%时,复合材料热导率可提高22.5%。  相似文献   

15.
以AlN角形粉和AlN球形粉为填料,以PDMS为有机基体,制备不同固含量的导热复合材料,研究了AlN形态、AlN填充分数及粉体表面改性等对导热复合材料粘度及热导率的影响。研究结果表明,与角形AlN粉体相比,球形AlN粉体可显著降低复合材料的粘度,因而有利于获得更高的填充分数和更大的复合热导率。利用KH570对AlN粉体进行表面改性,有利于降低界面热阻,提高复合热导率,改性浓度(质量分数)为2.0%时,复合材料热导率可提高22.5%。  相似文献   

16.
研究了氮气气氛无压烧结、气氛压力烧结和气氛热压烧结的制备方法对AlN/BN复合材料致密度的影响,提出了气氛热压烧结法为最佳制备方法.采用热压烧结法制备出高导热可加工的AlN/BN复合材料,并研究了热压烧结中不同BN含量对复合材料的致密度、热导率、强度、硬度等性能的影响,最后结合显微结构图片分析了复合材料在加工过程中裂纹的传播过程,从而解释了材料的可加工性得以提高的机理.  相似文献   

17.
采用放电等离子烧结(SPS)方法制备了低金刚石含量的金刚石/铜基复合材料,研究了金刚石含量对复合材料的致密度、热导率、抗拉强度和伸长率等的影响。结果表明,随着金刚石含量的增加,金刚石/铜基复合材料的致密度、热导率、力学性能都先增后减。当金刚石含量为1.0%时,复合材料的抗拉强度达到221.35 MPa;在金刚石含量为1.5%时致密度达到最大值;热导率和伸长率都是在金刚石含量为2.0%时达到最大值。金刚石/铜基复合材料的断裂机制主要是韧性断裂以及增强体界面剥离。  相似文献   

18.
溶胶-凝胶法合成LiTaO_3粉体的烧结和介电性能   总被引:2,自引:0,他引:2  
采用溶胶凝胶法合成LiTaO_3粉体,并探讨溶胶-凝胶过程中的工艺条件对LiTaO_3陶瓷制备的影响.结果表明:在CA(柠檬酸):Ta=4:1条件下制备的LiTaO_3粉体在1150 ℃烧结后试样的相对密度可达到92.3%;相对介电常数可达到147,介电损耗低为1.63.  相似文献   

19.
在流动N2保护下,对高压烧结制备的AlN(Y2O3)陶瓷进行了热处理,研究了热处理对AlN陶瓷显微组织及导热性能的影响.结果表明:在970℃热处理2 h后的AlN陶瓷材料与未热处理的试样相比,晶粒尺寸显著增大,晶粒形状越发规整,析出相均位于晶界处或者三角晶界区域,热导率从77.3 W/(m·K)提高到了156.7 W/(m·K).但是,将热处理时间延长到4 h,AlN陶瓷的气孔增大,出现了反致密化现象,热导率也降低到92.6 W/(m·K).  相似文献   

20.
采用机械合金化结合粉末冶金技术制备W-20Cu(vo1%)复合材料。利用扫描电镜和金相显微镜对不同球磨时间的W-20Cu复合材料显微组织进行表征,并对材料的各项物理性能进行测试。结果表明,随着球磨时间的延长,W-20Cu烧结体的组织越来越均匀,Cu相分布也越来越均匀。W-20Cu烧结体密度、收缩率、硬度、抗弯强度随球磨时间的延长而增大;球磨20h的W-20Cu复合粉烧结体热导率达到峰值(130.61Wm^-1K^-1),继续球磨,热导率减小。综合考虑所有研究结果,通过机械合金化所制备的W-Cu复合粉体可以获得具有优异综合物理性能的W-20Cu复合材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号