首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对铸造Cu-15Ni-8Sn合金进行均匀化处理和固溶处理后,研究了时效温度和时效时间对合金硬度和导电率的影响。通过对显微组织以及硬度和导电率的变化分析结果表明,时效时间和时效温度对Cu-15Ni-8Sn合金的硬度和导电率都有较大影响,并确定了Cu-15Ni-8Sn合金最佳时效时间是5 h,最佳时效温度是425 ℃。  相似文献   

2.
用高频感应熔炼炉制备3种不同V含量的Cu-7.5Ni-5Sn合金,经均匀化、固溶和时效处理后,测试试样硬度和导电率,研究添加V对合金显微组织和合金性能的影响。研究表明,添加V会细化合金组织,并抑制时效过程中晶界不连续沉淀的产生,而且随V含量的增加,对晶界沉淀抑制作用增强。Cu-7.5Ni-5Sn在380℃时效5 h获得峰值硬度274.6 HV,而Cu-7.5Ni-5Sn-0.2V和Cu-7.5Ni-5Sn-0.5V峰值硬度均在时效7 h后获得,分别为276 HV和289 HV,这是因为V与Ni生成Ni3V共格沉淀相,因此加V合金硬度高。添加V会延长合金硬化峰值的时效时间,同时增强硬化效果。  相似文献   

3.
采用粉末冶金法结合热挤压制备Cu-15Ni-8Sn-0.3Nb合金棒材。利用电子探针获得的元素分布图显示,在合金基体中生成了分布在晶界与晶内的富Nb析出相。透射电镜分析表明,富Nb析出相与合金基体之间无明确位向关系。合金在400°C时效早期发生调幅分解和有序化,使其强度迅速升高。Cu-15Ni-8Sn-0.3Nb合金比Cu-15Ni-8Sn合金具有更高的强度(抗拉强度1030 MPa)和更好的延性(伸长率9.1%),这是由于添加Nb元素后生成的富Nb析出相能细化合金组织,抑制时效过程中的胞状析出。  相似文献   

4.
利用传统熔铸法制备了Cu-15Ni-8Sn和Cu-15Ni-8Sn-0.57Y合金,通过光学显微镜(OM)、扫描电镜(SEM)和直读光谱仪等研究了Y元素对铸态Cu-15Ni-8Sn合金的组织、力学性能和Sn元素分布的影响。结果表明:添加Y能细化铸态Cu-15Ni-8Sn合金的枝晶形貌,使合金中层片状过渡组织(α+γ相)减少,并且可以抑制Sn元素的宏观偏析,铸锭中部和下部Sn元素宏观偏析程度分别改善了28%和9%;此外添加Y元素后,Cu-15Ni-8Sn合金硬度由108 HB增加到116.3 HB,导电率由9.834%IACS下降到6.634%IACS。  相似文献   

5.
以Cu-15Ni-8Sn合金粉为原料制备了粉末冶金试样,研究其在不同的固溶温度、冷压变形、时效温度和时效时间条件下的硬度,着重研究了840℃×15 min固溶+40%冷压变形条件下时效温度和时间对硬度及剪切强度的影响规律,采用金相及扫描电镜分析了相应的微观组织。结果表明,影响Cu-15Ni-8Sn合金硬度的主次因素为:冷压变形量>时效时间>时效温度>固溶温度,较优的工艺参数为840℃×15 min固溶+40%冷压变形+400℃×4 h时效,可获得37.6~38.3 HRC的高硬度和570~628 MPa的抗剪切强度。  相似文献   

6.
添加Si对Cu-15Ni-8Sn合金组织和性能的影响   总被引:4,自引:0,他引:4  
利用金相显微分析、SEM、TEM及能谱分析对添加Si的Cu-15Ni-8Sn合金的组织结构和性能进行了研究。结果表明,添加的Si与Ni原子相结合,形成新相Ni3Si和Ni2Si。在时效过程中,由于Ni2Si相的析出,试验合金的电导率和硬度相对于Cu-15Ni-8Sn合金都有所提高。  相似文献   

7.
研究了铸造Cu-15Ni-8Sn—xTi合金时效过程中组织和硬度的变化规律。研究表明,与Cu-15Ni-8Sn合金一样,含Ti的Cu-15Ni-8Sn合金能通过调幅结构及γ'化相的形成而得到强化。0.073%的Ti能完全固溶于Cu-15Ni-8Sn合金中,并加速基体中γ'和晶界胞状组织的形成和生长。当Ti含量超过0.300%时,Ni与Ti形成新相Ni3Ti,抑制γ'相的形成和生长,并完全抑制胞状组织的形成。  相似文献   

8.
通过对不同Mg含量的Cu-15Ni-8Sn合金铸态、固溶态和时效态的微观组织进行分析,研究了微量Mg对Cu-15Ni-8Sn合金组织及性能的影响。结果表明,添加的Mg元素会在富Sn相中偏聚,并且可以显著抑制时效过程中不连续沉淀相的析出,从而改善合金的力学性能。此外,随着Mg添加量增加,合金的峰值时效硬度增大,电导率降低。在Mg含量为0.3%时,合金的硬度(HV)和电导率分别为369和4.85 MS/m,相较未加入Mg时硬度(HV)提高了11,电导率下降了0.26 MS/m。  相似文献   

9.
以Spinodal分解为例,说明相变研究的重要意义。铁素体不锈钢中呈现400~550℃时效脆性的原由为Spinodal分解而非有序化。介绍了含不溶区间及Spinodal线的Fe-Cr相图。Mn-Al-C钢奥氏体经Spinodal分解显示抗拉强度和屈服强度分别增至1120 MPa和1080 MPa,伸长率约30%,值得给予关注。Cu-15Ni-8Sn和Cu-15Ni-8Sn-0.2Nb合金由于Spinodal分解和有序析出相呈显著强化,并具良好应力松弛,高的弹性模量和导电性。Cu-Ni-Sn经Spinodal分解还会出现胞状或条状组织,称非连续Spi-nodal分解,铝合金时效时也会发生Spinodal分解,Co45Cu55薄膜通过Spinodal分解显示18%的最大巨磁阻。  相似文献   

10.
以Spinodal分解为例,说明相变研究的重要意义.铁素体不锈钢中呈现400~550℃时效脆性的原由为Spinodal分解而非有序化.介绍了含不溶区间及Spinodal线的Fe-Cr相图.Mn-Al-C钢奥氏体经Spinodal分解显示抗拉强度和屈服强度分别增至1120 MPa和1080 MPa,伸长率约30%,值得给予关注.Cu-15Ni-8Sn和Cu-15Ni-8Sn-0.2Nb合金由于Spinodal分解和有序析出相呈显著强化,并具良好应力松弛,高的弹性模量和导电性.Cu-Ni-Sn经Spinodal分解还会出现胞状或条状组织,称非连续Spi-nodal分解,铝合金时效时也会发生Spinodal分解,Co_(45),Cu_(55)薄膜通过Spinodal分解显示18%的最大巨磁阻.  相似文献   

11.
利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、显微维氏硬度计和涡流电导率仪,分析了不同镍锡比对Cu-Ni-Sn-P合金铸态、固溶态及时效态组织和性能的影响,从而优化了Cu-Ni-Sn-P合金中镍和锡元素的成分配比,同时研究了不同形变热处理工艺对Cu-0.87Ni-1.82Sn-0.07P合金组织和性能的影响。结果表明,Ni∶Sn为1∶2时Cu-Ni-Sn-P合金(Cu-0.87Ni-1.82Sn-0.07P合金)的综合性能最佳,固溶时效处理后硬度最高达119.9 HV0.5,电导率为35.0%IACS。时效前经过30%预冷轧变形能提高时效峰值硬度,450 ℃时效后硬度可达164 HV0.5。断口组织多为韧窝,韧性较好,抗软化温度为480 ℃。时效强化析出相与位错为切过关系,析出相呈现为球形Ni-P颗粒;晶界处析出颗粒较大,晶内析出的颗粒普遍较小,尺寸介于几十纳米到数百纳米之间。  相似文献   

12.
采用动电位极化法对Cu-15Ni-8Sn合金的点蚀行为进行了研究,结果表明,在不同浓度的NaCl(0.01%,0.1%,1%和10%)溶液中,随着Cl-浓度的增大,Cu-15Ni-8Sn合金试样的耐点蚀性能下降,蚀孔半径显著增加。当向NaCl溶液中加入较低浓度(0.001,0.01,0.1mol/L)的Na2S2O3时,Cu-15Ni-8Sn合金试样的点蚀敏感性降低,点蚀受到明显抑制。而当Na2S2O3的加入浓度逐渐升高到1mol/L时,Cu-15Ni-8Sn合金试样耐点蚀性能没有提高。  相似文献   

13.
机械合金化和熔炼法制备的Cu—15Ni—8Sn合金的Spinodal分解   总被引:3,自引:0,他引:3  
利用透射电子显微镜(TEM)和X射线多晶衍射(XRD)观察分析了机械合金化(MA)和熔炼两种方法制备的Cu-15Ni-8Sn(质量分数,%)合金在400℃不同时效时间Spinodal分解产生的调幅组织结构和边带卫星峰,及合金固溶体的晶格参数变化。同时用维氏硬度计测量了合金的时效硬度变化,结果表明,与熔炼法相比,MA制备的该合金时效过程中,Spinodal分解初期的调幅组织结构波长较大,调幅分解速度也慢慢,延缓了γ′相的析出,但时效过程中二者硬度达到峰值的时间几乎是一致的。  相似文献   

14.
研究在油润滑状态下摩擦速度和加载载荷对时效态Al-Sn-Cu合金摩擦磨损性能的影响。结果表明:由于峰时效合金较欠时效和过时效合金具有最佳的强度-塑性配比和更高的硬度,因此峰时效合金表现出最优的摩擦磨损性能。摩擦速度和加载载荷对合金磨损率和摩擦因数具有显著影响。随着摩擦速度的增大,磨损表面的润滑膜和Sn相更为均匀,合金的磨损率和摩擦因数均降低;然而随着加载载荷的增加,均匀的润滑膜和Sn相被严重破坏,合金磨损率急剧上升。Sn相和包括中间润滑层、摩擦氧化层的润滑膜是影响Al-Sn-Cu合金摩擦磨损性能的决定性因素。  相似文献   

15.
添加0.10%Ce对Sn-0.7Cu-0.5Ni焊料与Cu基板间界面IMC的影响   总被引:4,自引:1,他引:4  
研究Sn-0.7Cu-0.5Ni-xCe(x=0,0.1)焊料与铜基板间543K钎焊以及453K恒温时效对界面金属间化合物(IMC)的形成与生长行为的影响。结果表明:往Sn-0.7Cu-0.5Ni焊料合金中添加0.10%Ce,能抑制等温时效过程中界面IMC的形成与生长;焊点最初形成的界面IMC为Cu6Sn5,时效10d后,Sn-0.7Cu-0.5Ni和Sn-0.7Cu-0.5Ni-0.10Ce这2种焊料中均有Cu3Sn形成,与Sn-0.7Cu-0.5Ni/Cu焊点相比,Sn-0.7Cu-0.5Ni-0.10Ce/Cu界面IMC层较为平整;该界面IMC的形成与生长均受扩散控制,主要取决于Cu原子的扩散,添加稀土元素Ce能抑制Cu原子的扩散,Sn-0.7Cu-0.5Ni和Sn-0.7Cu-0.5Ni-0.10Ce焊点界面IMC层的生长速率分别为6.15×10-18和5.38×10?18m2/s。  相似文献   

16.
目的 为提高衬套材料的摩擦磨损性能和极压载荷提供理论依据,探究其适用工况。方法 通过对对磨材料进行渗碳处理,采用SRV–IV微动摩擦磨损试验机进行摩擦磨损试验,研究在模拟实际工况下对磨件进行渗碳处理后对常用的2种衬套材料摩擦磨损性能的影响,采用三维面扫仪、扫描电镜、成分分析仪等探究其磨损机理。结果 将对磨材料进行渗碳处理后,QSn7–0.2合金进入稳定磨损阶段的时间提前了25%,平均摩擦因数增大了2.23%,平均磨损质量上升了26.53%,极压载荷减小了50.86%;CuNi6Sn6合金进入稳定磨损阶段的时间提前了约50%,平均摩擦因数减小了10.22%,平均磨损质量下降了9.09%;极压载荷减小了58.63%。对磨材料未经渗碳处理,QSn7–0.2合金的磨损机理主要为磨粒磨损,伴随轻微的黏着磨损;CuNi6Sn6合金的磨损机理主要为点蚀磨损,伴随少量的磨粒磨损。对磨材料经渗碳处理后,QSn7–0.2合金的磨损机理为剥层磨损,伴随轻微的黏着磨损和磨粒磨损;CuNi6Sn6合金的磨损机理主要为胶合磨损,伴随黏着磨损及少量磨粒磨损。结论 对磨材料经渗碳处理后,对于QSn7–0.2合金而言,平均摩擦因数和磨损质量增大;CuNi6Sn6合金的平均摩擦因数和磨损质量都相应减小,但挤压载荷减小的幅度更大。因此,CuNi6Sn6合金适用于对磨材料经渗碳处理且极限载荷较低的工况;QSn7–0.2合金适用于对磨工件未经渗碳处理的、极限压力较大的工况条件。  相似文献   

17.
本文采用立式连续铸造制备直径160 mm的Cu-15Ni-8Sn合金铸锭,并基于分形维数对Cu-15Ni-8Sn合金中组织非均匀性进行了探究.结果表明:Cu-15Ni-8Sn合金的微观组织由树枝晶组织和偏析组织构成,树枝晶组织分形维数可以作为衡量微观组织非均匀性的重要指标.浇铸温度为1280℃时,随着树枝晶组织分形维数...  相似文献   

18.
研究稳恒强磁场对Cu-15Ni-8Sn合金凝固过程中微观组织形貌、枝晶主干处成分偏析及显微硬度的影响规律。结果表明:对比无磁场条件,2 T强磁场对Cu-15Ni-8Sn合金试样微观组织与枝晶主干处微观偏析的影响并不大。但当磁感应强度提高至4~6 T时,试样枝晶数量明显减少,尺寸显著粗化;且枝晶主干处Sn元素含量明显下降,Ni元素含量则明显升高。此外,强磁场的施加能显著提高Cu-15Ni-8Sn合金枝晶主干的显微硬度,对比无磁场条件,施加6 T强磁场时合金中枝晶主干处显微硬度上升74.4%。强磁场对Cu-Ni-Sn合金微观偏析及显微硬度的影响主要与磁场在合金凝固过程中对Sn、Ni等元素扩散的影响有关。  相似文献   

19.
利用真空熔炼法制备了Cu-3Ti-0.2Fe-1Sn合金,通过均匀化退火、固溶+冷轧(变形量分别为40%、60%、80%)+450 ℃时效处理,研究了形变热处理对Cu-3Ti-0.2Fe-1Sn合金显微组织、导电率及硬度的影响。结果表明:真空熔炼制得的 Cu-3Ti-0.2Fe-1Sn合金铸态组织中含有大量的枝状晶组织,经固溶处理后组织中出现了晶粒长大;铸态合金的硬度和导电率分别为178.1 HV和10.85%IACS,固溶处理后硬度和导电率都相应降低,分别为102.7 HV和4.58%IACS。经过冷变形和时效处理后Cu-3Ti-0.2Fe-1Sn合金硬度明显提高,变形量为60%时,时效480 min时硬度达到峰值,合金硬度为310.2 HV,此时合金的导电率为18.59%IACS。  相似文献   

20.
利用力学、电学性能测试,金相显微分析、扫描和透射电镜观察等手段研究均匀化退火和形变热处理工艺对Cu-15Ni-8Sn-1.0Zn-0.8Al-0.2Si合金组织结构与性能的影响。合金铸锭经830℃,2 h+850℃,2 h双级均匀化退火处理,热轧变形后合金板材经850℃,1 h固溶处理,冷轧变形60%后,分别在400和450℃时效处理。当450℃时效时间为30 min时,合金硬度为3780 MPa,电导率8.0%IACS,抗拉强度1144 MPa,屈服强度1098 MPa,延伸率3.29%;在400℃时效1 h时,合金硬度为3900 MPa,电导率7.4%IACS,抗拉强度1164 MPa,屈服强度1112 MPa,延伸率3.05%。合金的强化效应主要来源于调幅分解强化、析出强化和亚结构强化的共同作用,同时,溶质原子的析出使基体固溶度降低,合金电导率提高。合金经双级均匀化退火处理后为均匀的等轴晶组织,在400℃,1 h时效过程中发生调幅分解,同时析出具有L1_2结构的β-Ni_3Sn析出相,其与Cu基体的晶体取向关系为:(002)_(Cu)‖(00 1)_β,[110]_(Cu)‖[110]_β;(220)_(Cu)‖(110)_b,[112]_(Cu)‖[112]_β。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号