首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
热拉伸变形对AZ21B镁合金板材力学性能与组织的影响   总被引:1,自引:0,他引:1  
沿着与板材轧制方向成不同角度的方向截取试样,研究不同拉伸温度下AZ21B镁合金板材的力学性能和组织。结果表明:与轧制方向成相同角度的AZ21B镁合金板材试样,其综合力学性能因温度的变化而不同,其抗拉强度随温度的升高而下降,伸长率随温度的升高而增大;同时由于轧制会使镁合金板材产生很强板织构,造成板材的力学性能各向异性,当温度在室温(25℃)、150℃、200℃、250℃时,与板材轧制方向成0°试样的抗拉强度最大,当温度在300℃、350℃时,与板材轧制方向成90°试样的抗拉强度最大;在室温至250℃拉伸变形时,出现少量的孪晶,而在250℃以上拉伸变形时发生完全动态回复和再结晶。室温下拉伸试样的断口表现为明显韧脆性断裂。  相似文献   

2.
研究了AZ31镁合金热轧板材经不同退火处理后的显微组织、拉伸性能和压缩性能,并探讨了退火处理对镁板拉伸性能和压缩性能差异的影响.结果表明:退火后,板材发生了不同程度的再结晶;退火后板材的断裂伸长率提高,抗拉强度略有下降,其中400℃×5min退火后断裂伸长率最大;与单轴拉伸相比,退火对镁板单轴压缩的力学性能影响不大,板材经退火后极限变形率略有提高,抗压强度无明显变化,300℃×30min退火后,镁板的压缩综合力学性能较好;镁板的拉伸性能和压缩性能存在差异,且差异与退火处理密切相关.  相似文献   

3.
研究AZ31B镁合金轧制道次间不同退火温度和时间对板材微观组织和力学性能的影响,分析了拉伸试样断口形貌.实验结果表明,退火处理后镁合金板材由轧制纤维组织转变为均匀等轴的再结晶组织,退火再结晶的起始温度为200℃;退火后的力学性能得到一定程度的恢复,硬度、屈服强度最大降幅分别为25.4%和37.1%,伸长率最大增幅达31.3%,拉伸断口由解理和韧窝混合断口转变为典型韧性断口.实验得到镁合金中间退火的较佳工艺为:退火温度300~320℃,退火时间60~120 min.  相似文献   

4.
研究了TA7钛合金板材热加工态和经750、800、850℃3种不同温度热处理后的显微组织、室温拉伸性能、弯曲性能、高温拉伸性能和高温持久性能。结果表明,热加工态TA7钛合金板材横向存在不均匀组织,纵向有较多拉长α晶粒;经750℃热处理后板材拉长α晶粒转变为等轴状;经800℃热处理后板材横向与纵向均为均匀、细小的等轴组织;经850℃热处理后板材晶粒发生长大。热处理后板材强度降低,塑性增加,弯曲性能和高温持久性能均满足GJB 2505A—2018标准要求;随着热处理温度的升高,板材室温拉伸强度和高温拉伸强度均逐渐降低,经850℃热处理后板材的500℃高温拉伸强度已不能满足要求。为了获得均匀、细小的组织及良好的力学性能,TA7钛合金板材宜采用800℃热处理。  相似文献   

5.
《锻压技术》2021,46(10):136-140
为了研究温度对淬火态2219铝合金板材圆孔翻边工艺的影响,在25~300℃温度范围内,对淬火态2219铝合金板材进行热拉伸试验以研究其在不同温度下的力学性能变化,并根据热拉伸试验结果进行加热状态下的圆孔翻边试验。结果表明:对于淬火态2219铝合金板材,加热可以提高其塑性,加热至150℃时伸长率达到40%以上,随着温度的升高,其伸长率继续提高,但超过200℃时,随着温度升高,其伸长率略有降低;与室温(25℃)状态下圆孔翻边相比,加热可以显著提高淬火态2219铝合金板材的圆孔翻边成形性能,当温度在170~180℃范围时,可以一次完成翻边圆孔的成形,且加热并不影响产品的最终力学性能。  相似文献   

6.
本文对工业级7055-T7951铝合金热轧厚板的合金成分、室温拉伸性能、显微组织以及织构特征等进行了实验分析,对该板材的微观组织状态、力学性能各向异性与织构特征关系进行了详细研究,结果表明:该板材镁元素含量总体处于下限水平,难溶的合金化合物很少,晶内的析出相主要为h'相和少量的h相,材料处于轻微过时效状态。板材存在明显的力学性能各向异性,沿轧制方向及横向的屈服及抗拉强度相近且明显优于与轧制方向呈45°方向上的指标。板材中心层各方位上的强度指标均优于表层对应方位上的指标,并且中心层的力学性能各向异性强于表层。该板材中心层有较为强烈的轧制类织构Brass和S,而表层则是以再结晶织构R为主。基于施密特定律研究了板材不同厚度层不同拉伸方向上平均屈服强度与施密特因子间的定性关系,探讨了织构特征对热轧厚板非均匀力学行为的影响规律。  相似文献   

7.
研究了不同退火态的TC2钛合金板材不同方向取样拉伸试验的力学性能,分析了各向异性对退火态TC2板材力学性能的影响规律。结果表明:TC2钛合金板材存在明显的各向异性,对比三个不同方向可知在0°方向上的抗拉强度最大,伸长率则为最小,45°方向强度最低;不同退火态TC2板材力学性能有差异,随退火温度的升高,板材不同拉伸方向的抗拉强度和屈服强度均有不同程度的降低;随退火温度的升高TC2板材的各向异性表现不同,退火温度对板材各向异性有一定程度的影响,850℃时板材各向异性较好,强度与塑性匹配较好。  相似文献   

8.
对Al-Mg-Si系铝合金汽车板进行了不同的中间退火处理(无中间退火、300 ℃×2 h、420 ℃×2 h),并利用光学显微镜、XRD、TEM、拓扑仪、拉伸试验机对板材进行了检测分析。结果表明,中间退火处理对T4P态板材的微观组织、织构、罗平纹和力学性能影响显著,提高中间退火温度有利于获得等轴晶粒、增大应变硬化指数(n值)、降低板材各向异性(Δr值),但塑性应变比(r值)也会有所降低。此外,经过300 ℃×2 h中间退火处理的板材在10%预拉伸后表现出最好的表面质量,无中间退火和420 ℃×2 h中间退火处理的板材在预拉伸后罗平纹缺陷严重。这主要归因于中间退火引发的板材微观组织和织构的差异。300 ℃×2 h的中间退火处理可以使Al-Mg-Si系铝合金板材在不降低力学性能的前提下显著改善罗平纹,表现出最佳的综合性能。  相似文献   

9.
采用力学性能测试、组织观察以及断口形貌分析等方法,研究了退火温度对5456铝合金力学性能和显微组织的影响。研究结果表明:随退火温度的升高,5456铝合金板材伸长率先增大后趋于稳定,其强度、屈强比及硬度则逐渐减小,当退火温度达到320℃后板材力学性能趋于稳定;退火温度由260℃升到280℃时,板材组织由纤维状变形组织向等轴再结晶组织转变。不同退火温度下5456铝合金板材拉伸断口均呈韧性断裂。综合得到5456铝合金冷轧板最佳的退火温度为320℃。  相似文献   

10.
通过OM、SEM、拉伸实验研究添加不同含量的Li元素对轧制及退火态AZ31镁合金组织和力学性能的影响。结果表明:添加Li元素的合金板材在热轧后均有大量孪晶出现。经过不同温度退火处理后,合金板材的力学性能得到不同程度的改善。LAZ131(Mg-1Li-3Al-1Zn)合金在经过150℃退火30 min,其沿TD方向拉伸时力学性能最佳,抗拉强度、屈服强度、伸长率分别为335 MPa、261 MPa、14.6%。而LAZ131合金在经过300℃退火30 min后的力学性能各向异性最小,且合金的组织为均匀细小的等轴晶,总的力学性能较好,抗拉强度、屈服强度及伸长率分别为259 MPa、174 MPa、23.1%。这是由于Li元素的添加对基面织构的改善以及在300℃退火时的再结晶所导致。  相似文献   

11.
对轴类锻件用中锰钢进行了高温热塑性研究。在不同温度下对试验钢进行了不同应变速率的高温拉伸试验,绘制了试验钢在不同条件下的高温热塑性曲线,并通过研究高温拉伸断口的形貌和组织分布,分析其断裂机理。结果表明,试验钢在650~1200 ℃范围内断面收缩率均达60%以上,热塑性良好,无脆性温度区。试验钢的高温拉伸断口附近组织为马氏体组织,在热塑性稍差的温度点(750,900 ℃)对应的组织中含有少量先共析铁素体。试验钢在650~1050 ℃范围内的断裂方式为穿晶韧性断裂,在1100~1200 ℃的断裂方式为沿晶断裂。  相似文献   

12.
利用金相显微镜、SEM、拉伸试验机研究铸态304奥氏体不锈钢在高温下的力学性能和变形组织特征.结果表明,随着温度的升高,304不锈钢的强度在300~950℃迅速下降,950~1250℃下降变缓;延伸率在950℃时达到最大,为86.28%;断面收缩率在950℃时最大,为94.45%.同时对304不锈钢高温拉伸试样断口进行了宏观和微观形貌观察,并探讨了断口形貌的成因及影响材料塑、韧性的因素.  相似文献   

13.
研究了U-2.5%Nb合金在-100~700℃温度范围内的力学性能。结果表明,合金的抗拉伸强度随试验温度上升呈下降趋势,其塑性在600℃以下温度并非单调变化,而是在500℃附近延伸率和断面收缩率分别出现极小值,合金拉伸断口与室温(20℃)相比具有明显的沿晶断裂特征。试验温度高于600℃后,合金塑性明显升高。热处理后的该合金加热至500℃经保温并冷至室温后,合金的冲击韧性有所降低。在-100℃~室温的温度范围,合金的冲击韧性随试验温度的降低而下降,并在-30~-10℃的温度范围发生韧脆转变。当温度低于-30℃后冲击韧性下降趋势明显减缓,合金冲击断裂面颗粒高低不平,具有准解理断裂特征。  相似文献   

14.
通过高温拉伸试验和Cockroft&Latham断裂准则,得到了45^#钢950℃、1000℃、1050℃下真实应力应变曲线,求取了其对应的断裂阈值,运用有限元软件DEFORM-2D对异周速滚筒式飞剪动态剪切过程进行模拟,对比了同周速飞剪、异周速飞剪以及平行剪力能参数的差异,分析了侧间隙、板厚和温度对异周速飞剪剪切抗力的影响,为滚筒式飞剪力能参数的计算提供了一种新的、较为准确的方法。  相似文献   

15.
工艺参数组合对TA7钛合金拉伸性能的影响   总被引:1,自引:0,他引:1  
通过对TA7钛合金拟水平正交实验和对室温拉伸性能检测结果的方差分析,获得了具有较好性能匹配的变形工艺参数组合:即坯料加热温度1040℃,应变速率0.05s-1,变形量50%.金相观察及断口形貌的研究表明,TA7钛合金在高于相变点温度始锻易获得尺寸稍大的初生α和尺寸小的再结晶α混合的双套组织,这种组织在拉伸过程中α颗粒易在原子密排面被拉脱.  相似文献   

16.
YZTC4钛合金的超塑性及其等温精锻工艺参数研究   总被引:1,自引:0,他引:1  
本文通过高温拉伸试验研究YZTC4钛合金的高温力学性能和超塑性能,探求该合金超塑性等温精锻工艺参数。研究结果表明,经过细化处理的YZTC4在T=850℃和ε0=1.3×10-3s-1的变形条件下,具有最佳的超塑性能,M值为0.80,最大延伸率可达1080%。  相似文献   

17.
采用Gleeble-2000热模拟试验机对无磁钻铤用0Cr19Mn21Ni2N高氮奥氏体不锈钢进行高温拉伸试验,用扫描电镜和能谱仪对拉伸试样断口及断口附近的组织进行分析,用Thermo-Calc软件计算试验钢的相变及析出相,研究了0Cr19Mn21Ni2N高氮奥氏体不锈钢的高温塑性变形行为。结果表明,试验钢的第Ⅰ脆性区>1150 ℃,第Ⅲ脆性区为800~950 ℃,未出现第Ⅱ脆性区。第Ⅰ脆性区的出现主要是在加热过程中试验钢由奥氏体向δ铁素体转变引起的,第Ⅲ脆性区的出现是因为M2(C, N)析出相及Al2O3夹杂物引起的。试验钢的高温抗拉强度随温度升高而逐渐降低,断面收缩率在1000~1150 ℃温度范围内表现出极佳的热塑性,温度超过1150 ℃后断面收缩率逐渐下降,因此0Cr19Mn21Ni2N高氮奥氏体不锈钢的热锻温度应选择在1000~1150 ℃之间,在此温度范围内断面收缩率均在73%以上,并且可以避开第Ⅰ与第Ⅲ脆性区。  相似文献   

18.
通过高温拉伸试验,研究了GWZ1031K镁合金在250~400 ℃、变形速率为0.2 mm/min条件下的高温变形行为。使用扫描电镜(SEM)、X射线能谱分析(EDS)等方法对微观组织和拉伸断口进行观察。结果表明,在不同温度下,GWZ1031K镁合金的高温拉伸应力-应变曲线均出现峰值,峰值应力随变形温度的升高而减小,而塑性则随着变形温度的升高呈现非线性快速升高,特别是在400 ℃时合金出现超塑性现象。结合高温力学性能测试对应的微观组织和断口形貌分析可以得出,GWZ1031K镁合金在250~350 ℃的温度区间内,具有较好耐热性能(高温抗拉强度)。  相似文献   

19.
The influences of deformation temperature and deformation degree on the microstructure and mechanical properties of AZ80 magnesium alloy were investigated by the adoption of isothermal plain strain compression experiment.The results show that thermal compression processing can refine the grain size and the tensile strength of all the deformed AZ80 magnesium alloys is increased to the maximum of 320 MPa.With the increasing of deformation temperature,the tensile strength decreases;with the increasing of th...  相似文献   

20.
Mg-Gd-Y-Zr激光焊接工艺优化及高温力学性能   总被引:3,自引:3,他引:0       下载免费PDF全文
利用光纤激光焊对T6态Mg-10Gd-3Y-0.5Zr板材进行焊接. 以高温抗拉强度为评价指标,采用正交试验对工艺参数进行优化,分析了激光功率对接头高温力学性能的影响. 利用SEM,XRD及HRTEM对最优工艺参数下接头焊缝中心组织、热影响区组织、高温拉伸断口进行观察与分析. 结果表明,激光功率对焊接接头高温力学性能影响最显著. 最优工艺参数下焊接接头200 ℃平均高温抗拉强度为292.1 MPa,为母材的84.5%,断后伸长率为8.6%,达母材的71.1%. 激光功率的变化会导致焊缝中心晶粒尺寸、热影响宽度及其晶粒尺寸和相组成发生变化,从而影响接头高温力学性能. 200 ℃下焊接试件与母材断裂模式均为韧性断裂且热影响区为接头薄弱部分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号