首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究AZ31B镁合金轧制道次间不同退火温度和时间对板材微观组织和力学性能的影响,分析了拉伸试样断口形貌.实验结果表明,退火处理后镁合金板材由轧制纤维组织转变为均匀等轴的再结晶组织,退火再结晶的起始温度为200℃;退火后的力学性能得到一定程度的恢复,硬度、屈服强度最大降幅分别为25.4%和37.1%,伸长率最大增幅达31.3%,拉伸断口由解理和韧窝混合断口转变为典型韧性断口.实验得到镁合金中间退火的较佳工艺为:退火温度300~320℃,退火时间60~120 min.  相似文献   

2.
铝合金板材在热轧制过程中温度较高,在一定程度上等同于板材的退火处理,但是并没有达到完全退火状态。经过试验研究,5083铝合金热轧板在经过不同温度退火后,对板材进行力学性能和显微组织检测分析,研究其变化规律,确定热轧态板材的后续退火工艺制度;热轧终轧温度为320℃的5083铝合金热轧板,需要在500℃~550℃范围内退火才能达到最佳O态组织和性能。  相似文献   

3.
铝合金板材在热轧轧制过程中终轧温度较高,不同终轧温度板材,轧后采用不同温度退火,组织和性能有较大差异。试验研究了5083铝合金在不同热轧终轧温度及其轧后采用对应不同温度退火后,对板材进行力学性能和显微组织分析,研究其变化规律;测定不同热轧终轧温度板材对应的组织和性能,确定不同终轧温度对应的最佳退火工艺制度;热轧终轧温度约低于275℃时,退火温度至少为300℃,基本完成再结晶,退火温度达到500℃以上时,发生完全再结晶;热轧终轧温度为高于320℃时,退火温度为500℃以上,其板材达到更优异的O态组织和性能;600℃退火的板材均发生组织过烧。  相似文献   

4.
对用半连续铸造法制备的5754铝合金铸锭,经过热轧与冷轧后得到4 mm厚的合金板材。试样在电阻炉中进行不同温度与时间的退火,研究了热处理主要参数对合金板材力学性能与显微组织的影响,观察了拉伸断口的形貌。结果表明,5754铝合金退火时间对力学性能的敏感性小于退火温度;适宜的退火工艺为:退火温度为250 ℃,保温时间为4~16 h。  相似文献   

5.
采用电子万能试验机、金相显微镜、显微硬度测试和扫描电镜(SEM)观察等手段,对不同退火温度下7005高强铝合金的力学性能、显微组织及硬度等进行了分析研究.结果表明,随退火温度的升高,铝合金抗拉强度和硬度明显下降,断后伸长率呈线性增长,达到再结晶温度450℃后性能趋于稳定.力学性能的变化与组织均匀性的变化相关.分析拉伸断口形貌,主要由韧窝和撕裂棱组成,属韧性断裂.  相似文献   

6.
通过力学性能测试、光学显微镜及腐蚀性能测试等手段,研究了不同退火温度对实际生产的5AN6铝合金板材组织和性能的影响。结果显示:合金在退火后力学性能持续下降,于280 ℃退火时强度发生大幅度下降;在300~360 ℃退火时,合金力学性能趋于稳定;原始状态合金的晶粒组织为不完全的纤维组织,在280 ℃退火之后晶粒明显细化,可认为合金在280 ℃退火后发生了再结晶;5AN6铝合金的腐蚀性能温度敏感区间为160~240 ℃,在此温度区间内显微组织显示为沿晶界连续析出的β相。  相似文献   

7.
通过调整SP700钛合金板材的热处理制度,获得了不同组织形态的SP700钛合金板材,研究了不同组织形态对SP700钛合金板材的力学性能、断裂韧性等性能的影响。结果表明,随着退火温度的升高,SP700钛合金板材的显微组织依次为等轴组织、双态组织、片层组织;板材的横纵向室温抗拉强度和屈服强度升高,400℃高温抗拉强度升高,断裂韧性升高;当退火温度从770℃升高到870℃,室温伸长率和高温伸长率变化不大,当退火温度从870℃升高到930℃时,伸长率迅速降低;双态组织具有良好的综合力学性能。试样断口的SEM图表明:770℃和870℃退火的试样为延性断裂断口,930℃退火的试样为脆性断裂断口。  相似文献   

8.
采用光学显微镜、扫描电镜、显微硬度仪及电子万能拉伸试验机等研究了退火温度和退火保温时间对5083铝合金热轧厚板力学性能和显微组织的影响.结果 表明:随着退火温度升高与保温时间延长,5083铝合金热轧板的强度逐渐下降而伸长率增大;退火温度比保温时间对力学性能的影响更为显著;热轧过程中表层和心部变形不均匀,导致在后续退火过程中板材的显微组织演化规律大不相同.在不同退火制度下,5083铝合金热轧板材的拉伸断口均为微孔聚集性韧性断裂.综合考虑,在450℃退火保温2h后5083铝合金热轧板材的组织和性能较好.  相似文献   

9.
对3003铝合金板材不同温度退火后,进行硬度、拉伸、杯突等力学性能检测,并通过EBSD观察其微观组织变化。结果表明,随着退火温度的升高,硬度和拉伸强度逐渐降低,伸长率和杯突值逐渐升高;480℃保温3 h退火,其强度、硬度和杯突深度趋于稳定,伸长率达到最大值。  相似文献   

10.
采用力学性能测试、表面粗糙度检测以及金相观察等方法,研究了退火工艺对2024铝合金力学性能和化铣后表面质量的影响。结果表明:随退火温度的升高和保温时间的延长,2024铝合金板材组织经历回复、再结晶及晶粒长大3个阶段,板材强度先减小后增大,伸长率先增大后减小,化铣后板材表面粗糙度亦先减小后增大。综合得到2024铝合金板材最佳退火制度为380℃保温3 h。  相似文献   

11.
在不同温度下对TA6合金冷轧态板材保温60 min后空冷退火处理,研究退火温度对TA6合金板材组织和性能的影响。结果表明,冷轧后的TA6合金板材,在650℃以下退火时,其组织和性能变化很小;在700℃退火时开始发生再结晶,组织和性能出现明显变化;在720~800℃之间退火时,板材的力学性能已趋于稳定。TA6合金板材合理的退火工艺为(750~800)℃×60 min后空冷。  相似文献   

12.
采用力学性能测试、电导率检测以及显微组织观察等方法,研究了退火工艺对5A06铝合金力学性能和电导率的影响。结果表明:随退火温度的升高和保温时间的延长,5A06铝合金板材强度逐渐减小,伸长率先增大后减小;电导率先增大后稳定不变。综合得到5A06铝合金板材最佳退火制度为310℃下保温3 h。  相似文献   

13.
为探究成品退火温度对铸轧坯料生产的3105铝合金冷轧板组织及力学性能的影响,通过拉伸机、光学显微镜、XRD、EPMA等检测设备及手段,探讨了不同温度退火后合金的力学性能、偏光组织、物相、析出相形貌及成分。结果表明:成品退火温度为320℃~400℃时,3105铝合金冷轧板的力学性能变化趋于稳定,抗拉强度为160 MPa~185 MPa,伸长率为13%~15%;成品退火温度为400℃~420℃时,合金的抗拉强度随温度升高而急剧下降,晶粒长大。3105铝合金物相以MnAl6相为主。为了避免Fe溶入MnAl6相形成(FeMn)Al6粗大片状聚集物,应将退火温度控制在400℃以下,w(Fe)控制在0.23%~0.35%。  相似文献   

14.
为了改善7×××系某铝合金板材的塑性,试验研究了退火工艺参数对7×××系某铝合金冷轧板材组织和力学性能的影响。研究结果表明,7×××系某铝合金冷轧板材,开始再结晶温度为200℃,终了再结晶温度为360℃;最佳完全退火制度为退火温度380℃~390℃,保温1.0 h;可作为制定工业生产7×××系某。O状态某铝合金板材退火工艺制度的基础。  相似文献   

15.
采用布氏硬度计、拉伸试验机和金相显微镜研究了不同温度退火对钎焊用芯材3003铝合金微观组织与力学性能的影响。结果表明,随退火温度升高,抗拉强度和屈服强度下降,420℃后趋于稳定,伸长率的变化规律相反。最佳退火工艺为420℃保温2 h,合金的组织为细小等轴晶,力学性能优异。  相似文献   

16.
采用拉伸和硬度测试、显微组织及拉伸断口观察等方法研究了终轧温度及退火温度对5052铝合金板材组织及性能的影响。结果表明,未经退火时,板材表层已经发生再结晶,而中心层组织仅发生回复过程。退火处理后,随退火温度的升高,合金板材的强度、硬度下降,而伸长率增加。5052铝合金终轧温度不低于330 ℃时,可在后续的冷加工获得较为均匀的组织,经400~500 ℃退火可获得综合性能较为优异(Rm≥175 MPa、Rp0.2≥65 MPa和A≥32%)的5052-O态合金板材。  相似文献   

17.
《锻压技术》2021,46(7):129-133
为了研究加热温度对退火态2219铝合金板材力学性能和微观组织的影响,在25~300℃温度范围内,对退火态2219铝合金板材进行单向拉伸试验。结果表明:退火态2219铝合金板材的强度随着加热温度的升高而降低,伸长率随着加热温度的升高显著增加,从室温状态下的31.50%升至300℃下的59.75%,塑性得到明显改善;退火态2219铝合金板材加热至一定温度再冷却至室温,然后进行固溶时效热处理,材料强度基本不发生变化,伸长率随加热温度的增加有所降低,从室温状态下的19.70%降至300℃下的15.04%,同时微观组织无明显差异,说明在一定温度范围内加热对2219铝合金板材的最终力学性能没有影响。  相似文献   

18.
采用力学性能测试和显微组织观察等方法,研究了Zn含量、退火温度和冷却速率对7075-O态铝合金组织与性能的影响。研究结果表明:随退火温度的升高,7075-O态铝合金板材的强度逐渐减小,伸长率先增大后减小;随冷却速率和Zn元素含量的增加,7075-O态铝合金板材强度逐渐增大,伸长率逐渐减小。为满足冲制用7075-O态铝合金薄板的性能要求,应选择Zn含量≤5.6%,最佳退火工艺为410 ℃×3 h炉冷至100 ℃出炉空冷。  相似文献   

19.
采用光学显微镜观察轧制后3003铝合金板材退火后的显微组织,利用室温拉伸试验、杯突试验和布氏硬度试验测试不同退火工艺后板材的性能,讨论了退火温度和保温时间对该合金显微组织、伸长率、屈强比、应变硬化指数、杯突值和硬度值的影响。结果表明:3003铝合金板材应变硬化指数和杯突值随退火温度的升高、保温时间的延长而增大,达到一定温度和时间后呈下降趋势;硬度则随退火温度的升高、保温时间的延长而降低,达到一定温度和时间后趋于稳定;结合显微组织的分析,确定退火温度460℃,保温1 h对3003铝合金板的塑性变形能力有较大的提高。  相似文献   

20.
王亮军  佘银柱 《锻压技术》2019,44(2):155-158
通过金相显微测试仪和力学拉伸试验仪器,分析了500~700℃退火温度下车用AZ91D镁合金板材室温拉伸力学性能以及断裂组织。研究结果表明:随着退火温度的增加,合金的晶粒尺寸逐渐增大,材料的抗拉强度降低。伸长率先增大后降低,并且在600℃下达到最大值,500,600与700℃温度下退火得到的试样的平均晶粒尺寸分别为4. 3,8. 5与15. 6μm;随着退火温度的增加,板材拉伸断口附近的显微组织中孪晶组织增加,孔洞变小,在500℃退火得到的镁合金板材断口区域存在一条明显的裂纹;随退火温度的增加,板材拉伸断裂机制为微孔聚集型断裂和解理断裂共同存在的混合型断裂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号