首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
采用真空低压渗碳工艺,在WZST-60G双室真空渗碳设备上进行8620钢的真空热处理工艺研究,从渗碳均匀性的角度对其显微组织、硬度、有效硬化层深度等重要工艺指标进行分析,获得了能够应用于实际生产的8620钢热处理工艺。8620钢在930℃渗碳,825℃油淬后进行-70℃深冷处理90 min,然后进行170℃回火处理后,其表面残留奥氏体等级为1级,表面硬度为57~60 HRC,有效硬化层深度在0.7~0.8 mm,同炉次有效硬化层深度偏差小于0.1 mm,渗碳均匀性较好,符合产品工艺要求。  相似文献   

2.
王耀武  高宁 《热处理》2013,28(2):61-64
测定了30CrMnTi钢试样在卧式双室真空渗碳炉渗碳并炉冷或淬火后的渗碳层深度、有效硬化层深度和表面硬度的均匀性。结果表明,按目标渗层深度1.0 mm真空渗碳和炉冷的试样,用金相法测定的渗层深度偏差≤0.10 mm。按目标渗层深度1~2 mm真空渗碳和淬火的试样的有效硬化层深度偏差≤0.10 mm。同炉次渗碳、淬火试样的表面硬度偏差≤1.5 HRC,不同炉次渗碳、淬火试样的表面硬度偏差≤2.5 HRC。  相似文献   

3.
研究了一种在1050℃真空渗碳后不经晶粒细化处理的渗碳钢。这种低碳钢含有2%的硅,在1050℃下为(γ+α)双相组织,并由α相阻止γ相晶粒粗化。高碳含量的渗碳层通过析出铌和钒的化合物颗粒阻止奥氏体晶粒长大。在1050℃,经100 min真空渗碳后,其表面碳含量达到0.87%,硬化层深度1.1 mm。这种钢的高硅含量对高温渗碳过程没有不利影响,在真空渗碳时也不会导致内氧化。  相似文献   

4.
研究了20Cr Mn Ti钢真空低压渗碳过程中渗碳温度和渗碳时间对渗层深度、渗层硬度分布和表面碳含量的影响,并分析了碳含量对渗层硬度分布的影响规律,比较了真空渗碳和气体渗碳两种渗碳工艺对盲孔结构的渗碳结果和渗层组织。结果表明,随渗碳温度的升高和渗碳时间的延长,渗层深度和表面碳含量增大,但表面硬度下降。碳含量对渗层硬度分布的分析结果表明,碳质量分数为0.78%时,渗碳层具有最高淬火硬度。对于盲孔结构,相较于气体渗碳,真空渗碳能显著减小渗层深度偏差,并改善渗层组织。  相似文献   

5.
研究了TC11钛合金经过不同温度、压力和时间真空渗碳后的渗层深度、表面硬度和显微组织。结果表明,提高温度、压力和延长时间可增加TC11钛合金渗碳层深度及表面硬度。TC11钛合金在1100 ℃×1.6 kPa×60 min条件下渗碳后,渗层深度约为0.25 mm,表面硬度约为470 HV0.2。  相似文献   

6.
通过在17Cr2Ni2Mo齿轮钢基础上添加微量元素V、Nb的方法制备新型齿轮钢G1,采用渗碳后直接淬火和一次淬火工艺对两种齿轮钢进行热处理,对比分析了热处理工艺对齿轮钢组织、性能和热处理变形趋势的影响。结果表明:直接淬火工艺下,齿轮钢渗碳层中可见不合格的沿着晶界网状分布的碳化物组织,一次淬火工艺下渗碳层为细小的碳化物+马氏体组织;在两种热处理工艺下,G1钢的渗碳层显微硬度要高于17Cr2Ni2Mo钢,且直接淬火工艺下渗碳层的显微硬度要高于一次淬火工艺下渗碳层的显微硬度,两种齿轮钢的有效硬化层深度都约为1.7 mm;在淬火温度为860℃、回火温度为150℃时,G1齿轮钢渗碳层的显微硬度最大,为适宜的齿轮钢热处理方案;添加V、Nb的G1齿轮钢的热处理变形趋势要小于17Cr2Ni2Mo齿轮钢。  相似文献   

7.
18Cr2Ni4WA钢渗碳层质量的综合控制模型   总被引:1,自引:0,他引:1  
研究了18Cr2Ni4WA钢在不同工艺下渗碳时渗碳层中碳的分布规律,建立了渗碳层深度和表面碳浓度分布的数学模型,为渗碳工艺参数的优化设计、渗碳层深度和表层碳浓度分布的精确控制提供了理论依据。  相似文献   

8.
《铸造技术》2016,(11):2349-2352
以合金钢齿轮18Cr Ni Mo7为设计原型,通过合金渗碳建模、渗碳淬火过程的计算机模拟得到了合金齿轮不同区域的渗碳变化规律,并采用有效硬化层法、金相法和化学剥层法得到了实际渗碳过程中的渗碳层深度与碳浓度分布特征。结果表明,随着距离合金齿轮表面距离的增加,碳含量逐渐降低;采用化学分析法测得的不同部位的碳含量分布与计算机模拟结果吻合。可以通过计算机模拟的方法预测渗碳工艺条件下最终热处理完成后有效硬化层的深度,这样就可以增加生产效率。  相似文献   

9.
采用真空低压渗碳高压气淬工艺对20MnCrS5齿轮钢进行表面真空渗碳处理,分析扩散时间对硬度梯度、渗层深度、显微组织以及碳含量分布的影响,并优化真空渗碳工艺。结果表明,随着扩散时间的延长,C原子由表层向基体发生扩散,当扩散时间超过100 min后,C原子的扩散速度减缓;当C含量超过1.0%后,淬火后容易形成尺寸较大的残留奥氏体,随着C含量的降低,显微组织由孪晶马氏体向位错马氏体转变,硬度下降;在本试验条件下,20MnCrS5钢合适的真空低压渗碳高压气淬工艺为930 ℃强渗42 min,扩散140 min,0.6 MPa高压气淬至室温,并在160 ℃低温回火2 h。经该工艺处理后,组织中碳化物等级为1级,残留奥氏体等级为2级,马氏体等级为3级,表层无内氧化,渗碳层厚度约为0.91 mm,符合技术要求。  相似文献   

10.
气体渗碳CAD软件的试验验证   总被引:3,自引:0,他引:3  
用20CrMnTi和20CrMo钢制的试样,根据渗碳层深度分别为1.2mm和1.4mm的齿轮的技术要求,在装备有气体渗碳动态碳势控制CAD软件的渗碳炉上分别进行了试验,对模拟结果进行了验证,证实了该软件功能强劲、控制准确。其表面碳浓度(质量分数)偏差<0.05%;渗层内的碳浓度梯度曲线平滑,呈“S”平台分布;渗层深度为1.2mm和1.4mm时,渗层深度的偏差<0.05mm。用该软件设计的渗碳工艺与实际检测结果能很好地吻合。  相似文献   

11.
通过光学显微镜、扫描电镜、XRD测试、硬度梯度测试等研究16MnCr5低碳合金钢凸轮轴渗碳淬火+低温回火后沿径向的显微组织和硬度。结果表明,940 ℃强渗适用于16MnCr5钢凸轮轴,显微组织沿凸轮轴径向变化明显,渗碳层表面组织为高碳的针状马氏体和10%左右的残留奥氏体,表层硬度可达750 HV,有效硬化层深度可达1.5 mm以上,基体组织为贝氏体和低碳马氏体的混合组织。  相似文献   

12.
本文采用渗碳正火+二次加热+限形淬火+低温回火工艺生产一种定子产品,通过优化热处理工艺时间、碳势等,调整空气通入量,确定渗碳正火工艺;通过设计压淬模具、压淬工艺参数、淬火油流量等,开发出相应的压淬工艺。通过该热处理工艺的实施,最终开发出金相组织、硬化层深、表面硬度等均满足客户要求的产品。  相似文献   

13.
针对轴齿类零件高温渗碳淬火热处理畸变问题,研究了工业机器人减速器精密轴齿类零件真空低压渗碳和高压气淬工艺。结果表明,在升温阶段采用阶梯式升温保温方式,强渗阶段以乙炔-氮气交替脉冲进行强渗和扩散,淬火冷却阶段精确控制氮气压力1.8 MPa(18 bar)并使之稳定,可使轴齿类零件的总畸变量控制在0.005~0.015 mm。实际生产结果表明,轴齿类零件采用真空低压渗碳和高压气淬技术,渗碳层中的马氏体为1级,残留奥氏体和碳化物为1~2级,心部组织为1~2级。批量生产的减速器精密轴齿表面硬度、心部硬度和有效硬化层深度均值分别为59.7 HRC、38.6 HRC和0.681 mm,全部满足技术要求。  相似文献   

14.
AISI 316L奥氏体不锈钢低温离子-气体渗碳工艺优化   总被引:1,自引:1,他引:0  
周梦飞  赵程 《表面技术》2017,46(2):159-164
目的将低温离子-气体乙炔渗碳应用于AISI 316L奥氏体不锈钢表面硬化处理,同时探讨其硬化处理的最优工艺参数及优化效果。方法采用离子轰击去除不锈钢表面钝化膜并活化其表面,再进行低温气体乙炔渗碳,实验过程使用脉冲式供气循环处理方式。进行温度梯度实验,寻找渗碳处理的临界温度。并采用正交试验法设计3因素3水平共9组实验,分析气体比例、离子轰击时间、保温压强3个因素对渗碳层硬度和厚度产生的影响,以期得到不锈钢低温离子-气体乙炔渗碳优化工艺。通过对经过最优化工艺处理过后的不锈钢硬化层组织、成分、厚度、硬度、耐磨性、耐蚀性能的研究分析,验证此工艺对AISI 316L奥氏体不锈钢硬化处理的适用性。结果处理温度为540℃时渗碳层有碳的铬化物析出;离子轰击时间对渗碳层硬度影响最大,保温压强对硬化层厚度影响最明显。在硬化处理温度为520℃,V(H2)∶V(C2H2)=1∶1,渗碳压强为-0.02 MPa,离子轰击时间为20 min时,316L奥氏体不锈钢离子-气体乙炔渗碳效果最优。经优化工艺处理后不锈钢硬化层厚度达到30μm左右,表面硬度达到838HV0.05,耐蚀性和耐磨性能等都显著提高。结论低温离子-气体乙炔渗碳硬化处理适用于AISI 316L奥氏体不锈钢,其处理最合适温度为520℃。经优化工艺处理后的不锈钢具有较高的硬度、厚度,良好的硬度梯度,高耐蚀性能及高耐磨性能。  相似文献   

15.
通过对比分析含Nb和不含Nb的20CrMo钢在不同渗碳温度(950、1000、1050和1100 ℃)和时间(2、4和8 h)下的渗碳层深度和显微硬度,分析Nb微合金元素对渗碳过程中碳扩散速度和最终渗碳质量的影响。结果表明:在渗碳温度≤1000 ℃时,相同渗碳时间条件下,添加0.032%Nb的20CrMoNb钢渗碳件的渗碳层深度与20CrMo钢基本接近,有效渗碳层的最大硬度差值在10~50 HV0.2,Nb的添加对渗碳层深度和硬度影响较小;当渗碳温度>1000 ℃时,添加Nb会降低有效渗碳层深度和硬度。  相似文献   

16.
基于Fick第二定律与饱和值调整法,结合真空低压渗碳工艺控制过程,绘制了算法流程图,并利用数学计算软件编写了真空低压渗碳工艺计算程序,以20Cr钢为试验对象对该程序进行了验证。结果表明:基于饱和值调整法的真空低压渗碳工艺处理后,20Cr钢渗碳工艺总时间比传统方式约快240 s,渗碳时间节约600 s以上;渗碳工艺计算程序可以实现渗层深度的准确预测,且能满足产品的表面碳化物级别、组织形态等较高的技术要求。  相似文献   

17.
INDUCTION HARDENING of medium carbon steel iswidely used to produce automotive parts,agriculturalequipment and other machines.Inductor with highfrequency electric current was used as a heater totransform microstructure of steel surface into Austenite.Then water was sprayed on the heated steel.Austenitetransformed into Martensite.Area of microstructuralchange was considered to be case depth that was animportant parameter to be controlled in productionprocess.The standard procedure to de…  相似文献   

18.
通过对可控气氛多用炉设备进行改造,将闲置不用的氨气管道改为BH催渗用滴注管道并设计了催渗剂滴注控制系统,实现了BH渗碳工艺的自动化控制。研究了20Cr2Ni4A钢930 ℃超级渗碳和BH渗碳两种工艺的渗碳动力学,并模拟了渗层深度与碳浓度分布曲线。结果表明: BH渗碳时碳扩散系数要大于超级渗碳,BH渗碳的扩散系数为2.084×10-9 mm2·s-1,超级渗碳为1.667×10-9 mm2·s-1。本文模拟的20Cr2Ni4A钢在930 ℃进行BH渗碳及超级渗碳时的碳浓度分布和渗层厚度变化与实际验证情况相符。实际渗碳后要达到相同渗层厚度,采用超级渗碳所需的时间要高于BH渗碳,BH渗碳的渗碳速率提高了22.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号