首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分析主轴箱的主要热源以及发热量对整个主轴箱部组精度的影响,采用大流量的恒温油对主轴箱进行冷却与润滑以及优化主轴轴承安装工艺,以保证主轴高速运行的过程中其轴向变形量达到最小。通过试验验证,主轴达到热平衡时其伸长量为0.035 mm。通过对温升与热伸长量的函数进行研究,对轴向热变形进行补偿,以保证机机床在达到热平衡过程中,对工件加工精度的影响最小。  相似文献   

2.
减少机床热变形方法的研究   总被引:6,自引:0,他引:6  
机床在各种热源的作用下,产生热变形,影响工件与刀具之间的相对位移,造成加工误差,从而影响零件的加工精度。所以,减少机床热变形对提高机床加工精度是极其重要的。本文对机床工艺系统的主要热源进行了分析,并对减少机床热变形的方法及国内外研究的现状进行了讨论。  相似文献   

3.
为减少热变形对精密加工精度影响,对夏冬两季节机床主轴箱上温升和热变形及环境温度的影响进行了测试分析,并采用BP神经网络模型化的Volterra级数非线性系统实现热误差建模。分析结果表明:夏天环境温度受主轴箱散热影响而温度迅速升高;冬季机床散热较快,主轴箱上温升比较明显,环境温度几乎不变;同一台机床在夏季和冬季的热变形规律相似而变形量稍有不同。通过实验验证了该模型具有预测精度高的优点,为数控机床热误差实时补偿提供了参考。  相似文献   

4.
有效的热变形仿真分析是机床热平衡设计以及热误差补偿的基础。为了提高热变形仿真的精度,通过优化发热量等计算方法以及合理设计分析流程,基于ANSYS Workbench对超硬车数控车床液体静压主轴箱系统进行热特性仿真分析以及温升测试试验。热特性仿真与测试试验结果表明:温度场仿真与试验结果误差在5%以内,保证了热变形仿真的有效性。由变形仿真分析知:主轴3个方向上的热变形及主轴前端最大变形为5μm,为热误差补偿提供理论基础。由试验结果得到了同一转速下各热源处温升随时间的变化曲线,为合理预热、提高加工精度提供理论基础。  相似文献   

5.
基于有限元分析的机床导轨热变形研究   总被引:2,自引:1,他引:2  
高速高精度机床切削加工过程中,在多种热源的作用下导轨会产生热变形,影响工件与刀具间的相对位置,造成加工误差。找出导轨热位移较大的点,并分析其对加工精度的影响,对于减小加工误差提高加工精度至关重要。文章在对导轨热边界条件进行分析的基础上,应用有限元分析方法,建立了一类机床导轨的有限元热变形分析模型,并进行了热变形分析计算,为分析导轨的热变形对加工精度的影响提供了依据,并为机床综合热误差补偿提供参考。  相似文献   

6.
机床热变形的控制与防止   总被引:4,自引:1,他引:3  
本文通过机床的热变形热源分析以及机床在工作状况下对加工精度的影响,从而提出相应的控制与防止热变形的具体措施。  相似文献   

7.
加工中心主轴部件及其主轴箱的热特性有限元分析   总被引:6,自引:2,他引:4  
现代机械工业对机床精度提出了越来越高的要求.机床主轴部件和主轴箱的热特性是影响机床精度的主要因素之一.文章建立了加工中心主轴部件及其主轴箱的温度场模型并进行了数字模拟仿真.首先预测了机床主轴部件的热平衡时间能,并以温度曲线的形式表示出来,然后计算出主轴部件和主轴箱的热变形.依据这些我们能够得到主轴的轴向和径向误差,为主轴部件的设计计算奠定了基础.  相似文献   

8.
基于ANYSY的高速加工中心主轴箱有限元分析及优化   总被引:2,自引:2,他引:0  
根据经验和使用比拟的方法,设计了高速立式加工中心四种不同布筋形式的主轴箱模型。因为主轴箱的变形会间接引起刀具位置的偏移,所以在有限元分析时引进一质量点来模拟刀尖的空间位置,这样做更加形象地反应由于主轴箱变形而引起的对加工精度的影响。通过ANSYS有限元分析计算出主轴箱在各个方向上的刚度,通过比较可以得出多网筋主轴箱的刚度较大,也就是此方案较优。此方法为机床主轴箱有限元分析及优化方案选择提供技术依据。  相似文献   

9.
在高速高精度机床的加工过程中,由于各种热源的作用会导致机床产生热变形,从而影响其加工精度.针对整机热变形误差是影响机床加工精度的最大误差源,提出采用模糊聚类分析法对测温点进行优化选择,并利用多元线性回归方法建立整机热变形与温度之间的数学模型.结果表明,经优化后的温度变量应用到热误差模型中能够有效的预测整机的热变形,并且补偿效果很好.  相似文献   

10.
主轴是机床的关键部件,其热变形误差是影响精密机床工作精度的主要因素之一。文章对镗床主轴的不同热变形误差形式及对加工精度的影响进行了讨论。依据ISO和ASME标准建立某型号精密卧式坐标镗床热变形误差的测试环境,采用高精度测试系统对其主轴进行温度和热变形误差的实验测试与分析。结果表明,主轴热变形误差严重影响机床加工精度,主轴转速影响其达到热平衡的时间及热误差大小,需采取有效措施对热变形误差进行补偿,优化热结构,进一步提高机床加工精度。  相似文献   

11.
龙门式机床主轴箱的热伸长会影响工件的加工精度。分析主轴箱的热刚度机制,运用RBF神经网络的方法建立温升和位移的关系模型。通过测量主轴箱关键点的温度预测该点在下一时刻的温度变化量,进而得出主轴箱热刚度的变化规律。通过对比热刚度的预测值和测量值验证了该建模方法的有效性。  相似文献   

12.
随着中国制造2025的提出,智能制造对数控机床精度要求越来越高,机床热变形是影响加工精度的主要因素之一。从采集机床温度和主轴变形的角度,设计了温度及主轴变形采集方案,选用螺旋入孔式和磁吸式温度传感器,测量机床热源内部和表面温度,选用电涡流传感器测量主轴径向偏移量和轴向伸长量,采集了干切削和添加切削液两种加工环境下的主轴温度。分析可知,机床主轴电机温升最高,切削液能够带走大量切削热,有效减小切削热对主轴的影响,主轴转速越高温度越高,轴向伸长量越大。  相似文献   

13.
主轴箱作为主轴系统不可或缺的一部分,其热误差是影响数控机床加工精度的重要因素之一。以热设计为核心,通过结合田口法和有限元法,对主轴箱进行多目标优化设计与研究。搭建了主轴系统热态特性实验平台,以某机床厂的立式数控铣床为研究对象,获得其主轴系统的温度数据;根据实验测得的数据建立9组主轴箱优化模型;采用有限元法对温度-结构场耦合的9组模型进行仿真分析,得到各组模型的温度场分布云图和热变形分布云图,并进一步获得主轴箱结构优化结果和较优水平的主次因素参数组合。结果表明:对主轴箱热变形影响程度由高到低的因素为底板长度L、距离B、肋板宽度A、距离C;对主轴箱质量影响程度由高到低的因素为底板长度L、距离B、距离C、肋板宽度A。该研究为降低数控机床研发成本提供了参考。  相似文献   

14.
高速高精度车削中心在加工过程中,在多种热源的作用下其结构会产生一定的热变形,影响工件与刀具问的相对位置,造成加工误差.分析出车削中心整机的温度分布特点及其热变形,采取有效的措施,对于减小热变形、提高加工精度意义重大.文章在对车削中心整机热边界条件进行分析的基础上,应用有限元分析方法,建立了车削中心的有限元热分析模型,并进行了温度场及热.结构耦合分析计算,为分析热变形对机床精度的影响及热补偿的进行提供了依据.  相似文献   

15.
主轴箱是钻镗类组合机床的重要部分,它装配后精度的好坏,直接影响到组合机床的精度。 目前用于钻、扩、铰加工的多轴主轴箱较多,这类主轴箱在加工中,刀具有钻模板导向套引导,工件有专用夹具定位,孔的位置精度要求不高。因此,钻、扩、铰类主轴箱的精度与一般通用万能机床的主轴箱相比是最低的,结构也简单。  相似文献   

16.
以卧式数控机床为对象,对机床主轴在开启冷却机与关闭冷却机状态下进行热变形测试实验,并进行了详尽分析,得到主轴在两种状态下X、Y、Z轴向热变形规律;然后建立机床实体模型,采用有限元热固耦合及流固耦合法,对数控机床的关键部件主轴部件、主轴箱部件及立柱部件分别进行热变形仿真分析,以获得影响主轴热变形规律的主要因素,为产品改进提供依据。  相似文献   

17.
立式加工中心经过长时间的运行之后,主轴箱及主轴系统组成的单元会产生热变形,这影响到被加工零件轴向尺寸的加工精度。以VMC750立式加工中心为试验对象,测量主轴箱多点温度及主轴变形伸长量,确定主轴变形的主要原因,建立误差补偿模型,通过对立式加工中心加工过程中的热误差进行了实时补偿实验,结果表明:通过热变形补偿,主轴系统热变形实测为0.28~0.33 mm,其误差可减少75%左右,验证了该模型的有效性。  相似文献   

18.
本文综述了机床热变形对加工精度的影响及所采取的对策,对机床热变形的各种传感系统作了分析和介绍。图13幅。  相似文献   

19.
转塔主轴箱和自动更换主轴箱组合机床,近几年来在西欧的一些国家里得到了较大的发展。转塔主轴箱组合机床及手动更换主轴箱组合机床,早在五十年代就在一些工厂的小批或中批生产中应用过,得到很高的加工精度和良好的技术经济效果,但并没有引起更多人的注意,也没有得到进一步的发展。六十年代初期带数控和自动更换刀具的钻镗床即所谓的“机械加工中心”式机床出现以后,人们把实现单件或小批生产中孔加工  相似文献   

20.
基于粗集方法的机床热补偿误差的温度测点优化   总被引:1,自引:0,他引:1  
机床热误差是影响机床加工精度稳定性的最大误差源,因此减小热误差对提高机床的加工精度至关重要。采用粗集理论对机床热变形建模及补偿技术中温度测点的选择进行优化,以HMC800A立式三轴加工中心温度测点的选择为例进行研究,结果表明该方法能有效地减少温度测点数量,既可以保证模型的精度,又可节省工作量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号