首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Colloidal crystallisation is the only way to obtain three-dimensional ordered materials in which semiconductor, metallic, and magnetic nanocrystals are in close contact. It is expected that the quantum mechanical and dipolar interactions between the nanocrystal units can lead to unseen physical phenomena and materials. Here we review the development of this new and exciting field. We first compare nanocrystal superlattices with regular atomic solids regarding their mechanical strength and opto-electronic properties. We describe how nanocrystal superlattices have been obtained from colloid suspensions in several ways. The thermodynamic driving force for colloidal crystallisation is discussed in terms of inter-particle interactions in a good solvent and entropy. We compare the binary superlattices that have been obtained by solvent evaporation with the predictions of the hard-sphere model and show that semiconductor nanocrystals in a good solvent can behave as hard spheres. Finally, we discuss the quantum mechanical and dipolar interactions in nanocrystal superlattices and review recent studies of the opto-electronic and magnetic properties of novel superlattice materials.  相似文献   

2.
2D mesoporous materials fabricated via the assembly of nanoparticles (NPs) not only possess the unique properties of nanoscale building blocks but also manifest additional collective properties due to the interactions between NPs. In this work, reported is a facile and designable way to prepare free‐standing 2D mesoporous gold (Au) superstructures with a honeycomb‐like configuration. During the fabrication process, Au NPs with an average diameter of 5.0 nm are assembled into a superlattice film on a diethylene glycol substrate. Then, a subsequent thermal treatment at 180 °C induces NP attachment, forming the honeycomb‐like ordered mesoporous Au superstructures. Each individual NP connects with three neighboring NPs in the adjacent layer to form a tetrahedron‐based framework. Mesopores confined in the superstructure have a uniform size of 3.5 nm and are arranged in an ordered hexagonal array. The metallic bonding between Au NPs increases the structural stability of architected superstructures, allowing them to be easily transferred to various substrates. In addition, electron energy‐loss spectroscopy experiments and 3D finite‐difference time‐domain simulations reveal that electric field enhancement occurs at the confined mesopores when the superstructures are excited by light, showing their potential in nano‐plasmonic applications.  相似文献   

3.
长周期结构增强镁合金的研究进展   总被引:1,自引:0,他引:1  
张松  袁广银  卢晨  丁文江 《材料导报》2008,22(2):61-63,81
长周期结构增强镁合金是近年来新发展的一种具有应用前景的镁合金新型结构材料.长周期结构作为镁合金中一种新发现的增强相,极大地提高了合金的力学性能.主要介绍了长周期结构增强镁合金的各种类型、特点、力学性能以及目前国内外的研究现状.  相似文献   

4.
机械合金化─研制生产金属材料的一种新工艺   总被引:2,自引:0,他引:2  
本文介绍了机械合金化的工艺特点。用机械合金化技术可以获得一些常规方法难以制备的新型合金及难以获得的独特性能,如生产ODS合金和弥散强化复合材料,扩大合金元素在基体中的固溶度,获得非晶态合金(金属玻璃),合成金属间化合物材料,获得纳米结构材料。在金属材料研制生产中,机械合金化是一项值得大力研究开发的新技术。  相似文献   

5.
Traditional methods for fabricating nanoscale arrays are usually based on lithographic techniques. Alternative new approaches rely on the use of nanoscale templates made of synthetic or biological materials. Some proteins, for example, have been used to form ordered two-dimensional arrays. Here, we fabricated nanoscale ordered arrays of metal and semiconductor quantum dots by binding preformed nanoparticles onto crystalline protein templates made from genetically engineered hollow double-ring structures called chaperonins. Using structural information as a guide, a thermostable recombinant chaperonin subunit was modified to assemble into chaperonins with either 3 nm or 9 nm apical pores surrounded by chemically reactive thiols. These engineered chaperonins were crystallized into two-dimensional templates up to 20 microm in diameter. The periodic solvent-exposed thiols within these crystalline templates were used to size-selectively bind and organize either gold (1.4, 5 or 10nm) or CdSe-ZnS semiconductor (4.5 nm) quantum dots into arrays. The order within the arrays was defined by the lattice of the underlying protein crystal. By combining the self-assembling properties of chaperonins with mutations guided by structural modelling, we demonstrate that quantum dots can be manipulated using modified chaperonins and organized into arrays for use in next-generation electronic and photonic devices.  相似文献   

6.
高熵合金作为一种新型金属材料,因其具有优异的力学性能而受到越来越多研究者的广泛关注。在高熵合金中,金属间化合物从最初追求单相固溶体以避免形成有害相,发展到可作为有益的析出强化相或合金基体相(有序固溶体),丰富了高熵合金的组织调控策略,提升了高熵合金的力学性能。同时,也为高熵合金的发展起到了重要的推动作用。从高熵合金中相的形成规律出发,综述了高熵合金中典型金属间化合物及有序固溶体的研究现状,主要包括合金元素和热处理工艺等对典型金属间化合物形成规律和高熵合金力学性能的影响,并对高熵合金中金属间化合物的未来发展进行了展望。  相似文献   

7.
The properties of materials can be created and improved either by confining their dimensions in the nanoscale or by controlling their nanostructure. We have combined these two concepts, and here we describe a new class of nanostructured nanosized materials that show ordered phase-separated domains at an unprecedented molecular length scale. Scanning tunnelling and transmission electron microscope images of monolayer-protected metal nanoparticles, with ligand shells composed of a mixture of molecules, show that the ligands phase-separate into ordered domains as small as 5 A. Importantly, the domain shape and dimensions can be controlled by varying the ligand composition or the metallic core size. We demonstrate that the formation of ordered domains depends on the curvature of the underlying substrate, and that novel properties result from this nanostructuring. For example, because the size of the domains is much smaller than the typical dimensions of a protein, these materials are extremely effective in avoiding non-specific adsorption of a variety of proteins.  相似文献   

8.
9.
Zr-based bulk metallic glasses (BMGs) are a new type of metallic materials with disordered atomic structure that exhibit high strength and high elastic strain, relatively low Young’s modulus, and excellent corrosion resistance and biocompatibility. The combination of these unique properties makes the Zr-based BMGs very promising for biomaterials applications. In this review article, the authors give an overview of the recent progress in the study of biocompatibility of Zr-based BMGs, especially the relevant work that has been done in the metallic glasses group in Huazhong University of Science and Technology (HUST), including the development of Ni-free Zr-based BMGs, the mechanical and wear properties, the bio-corrosion resistance, the in vitro and in vivo biocompatibility and the bioactive surface modification of these newly developed BMGs.  相似文献   

10.
Many of the recent advances in enhancing the thermoelectric figure of merit are linked to nanoscale phenomena found both in bulk samples containing nanoscale constituents and in nanoscale samples themselves. Prior theoretical and experimental proof‐of‐principle studies on quantum‐well superlattice and quantum‐wire samples have now evolved into studies on bulk samples containing nanostructured constituents prepared by chemical or physical approaches. In this Review, nanostructural composites are shown to exhibit nanostructures and properties that show promise for thermoelectric applications, thus bringing together low‐dimensional and bulk materials for thermoelectric applications. Particular emphasis is given in this Review to the ability to achieve 1) a simultaneous increase in the power factor and a decrease in the thermal conductivity in the same nanocomposite sample and for transport in the same direction and 2) lower values of the thermal conductivity in these nanocomposites as compared to alloy samples of the same chemical composition. The outlook for future research directions for nanocomposite thermoelectric materials is also discussed.  相似文献   

11.
We propose an all-laser processing approach allowing controlled growth of organic-inorganic superlattice structures of rare-earth ion doped tellurium-oxide-based glass and optically transparent polydimethyl siloxane (PDMS) polymer; the purpose of which is to illustrate the structural and thermal compatibility of chemically dissimilar materials at the nanometer scale. Superlattice films with interlayer thicknesses as low as 2 nm were grown using pulsed laser deposition (PLD) at low temperatures (100?°C). Planar waveguides were successfully patterned by femtosecond-laser micro-machining for light propagation and efficient Er(3+)-ion amplified spontaneous emission (ASE). The proposed approach to achieve polymer-glass integration will allow the fabrication of efficient and durable polymer optical amplifiers and lossless photonic devices. The all-laser processing approach, discussed further in this paper, permits the growth of films of a multitude of chemically complex and dissimilar materials for a range of optical, thermal, mechanical and biological functions, which otherwise are impossible to integrate via conventional materials processing techniques.  相似文献   

12.
Nanocrystalline NiAl materials were fabricated using mechanical alloying and hot-pressing sintering technique. The crystal structural and microstructure of milled powders during mechanical alloying, and the microstructure and mechanical properties of bulk NiAl intermetallic were characterized. The results show that B2 ordered nanocrystalline NiAl powders were successfully synthesized by solid-state diffusion via the gradual exothermic reaction mechanism during mechanical alloying. Scanning electron microscope image confirmed that the powder particles were flat and flake shape in the early stage of milling, but changed to a spherical shape with the crystallite size about 30 nm after the milling. After sintering, the crystal structure of nanocrystalline NiAl intermetallic was assigned to B2 order NiAl phase with the average crystallite size about 100 nm. The nanocrystalline NiAl intermetallic exhibited prominent room temperature compressive properties, such as the true ultimate compressive strength and the fracture strain were 2143 MPa and 32.2%, respectively. The appearances of vein-like patterns on the fracture surface of NiAl intermetallic materials indicated that the fracture mechanism could be characterized as ductile fracture. It can be concluded that higher sintering density and nanocrystalline of NiAl intermetallic were benefited for the improvement of mechanical properties.  相似文献   

13.
When bulk materials are made into micro‐and nanoscale fibers, there will be attractive improvement of structural and functional properties, even unusual experimental phenomena [Ref. 3 ]. The main drawback of various applications of metallic fibers is poor ability of present fabrication methods for controlling their dimensions and surface properties [Ref. 4 ]. Metallic glassy fibers (MGFs) are desired because of unique mechanical and physical properties and glass‐like thermoplastic processability of metallic glasses (MGs). Here, we report a synthetic route for production of micro‐to nanoscale MGFs (the diameter ranges from 100 µm to 70 nm) by driving bulk metallic glass rods in their supercooled liquid region via superplastic deformation. Compared with existing metallic fibers, the MGFs have precisely designed and controlled properties and size, high structural uniformity and surface smoothness, and extremely flexibility. Remarkably, the method is simple, efficient, and low cost, and the MGFs can be continuous prepared by the method. Furthermore, the MGFs circumvent brittleness of MGs by size reduction. We proposed a parameter based on the thermal and rheological properties of MG‐forming alloys to control the preparation and size of the fibers. The MGFs with superior properties might attract intensive scientific interest and open wide engineering and functional applications of glassy alloys.  相似文献   

14.
Zr-based bulk metallic glasses (BMGs) are a new type of metallic materials with disordered atomic structure that exhibit high strength and high elastic strain, relatively low Young’s modulus, and excellent corrosion resistance and biocompatibility. The combination of these unique properties makes the Zr-based BMGs very promising for biomaterials applications. In this review article, the authors give an overview of the recent progress in the study of biocompatibility of Zr-based BMGs, especially the relevant work that has been done in the metallic glasses group in Huazhong University of Science and Technology (HUST), including the development of Ni-free Zr-based BMGs, the mechanical and wear properties, the bio-corrosion resistance, the in vitro and in vivo biocompatibility and the bioactive surface modification of these newly developed BMGs.  相似文献   

15.
Electrons in graphene at low energy obey a two-dimensional Dirac equation, closely analogous to that of neutrinos. As a result, quantum mechanical effects when the system is confined or subjected to potentials at the nanoscale may be quite different from what happens in conventional electronic systems. In this article, we review recent progress on two systems where this is indeed the case: quantum rings and graphene electrons in a superlattice potential. In the former case, we demonstrate that the spectrum reveals signatures of 'effective time-reversal symmetry breaking', in which the spectra are most naturally interpreted in terms of effective magnetic flux contained in the ring, even when no real flux is present. A one-dimensional superlattice potential is shown to induce strong band-structure changes, allowing the number of Dirac points at zero energy to be manipulated by the strength and/or period of the potential. The emergence of new Dirac points is shown to be accompanied by strong signatures in the conduction properties of the system.  相似文献   

16.
Lightweight materials with high ballistic impact resistance and load‐bearing capabilities are regarded as a holy grail in materials design. Nature builds these complementary properties into materials using soft organic materials with optimized, complex geometries. Here, the compressive deformation and ballistic impact properties of three different 3D printed polymer structures, named tubulanes, are reported, which are the architectural analogues of cross‐linked carbon nanotubes. The results show that macroscopic tubulanes are remarkable high load‐bearing, hypervelocity impact‐resistant lightweight structures. They exhibit a lamellar deformation mechanism, arising from the tubulane ordered pore structure, manifested across multiple length scales from nano to macro dimensions. This approach of using complex geometries inspired by atomic and nanoscale models to generate macroscale printed structures allows innovative morphological engineering of materials with tunable mechanical responses.  相似文献   

17.
电子束物理气相沉积工艺制备超薄高温结构材料的研究   总被引:2,自引:0,他引:2  
马李  孙跃  赫晓东  李垚 《材料导报》2006,20(11):100-103
介绍了包括热障涂层、高温合金薄板、金属/陶瓷及金属/金属间化合物微叠层薄板等金属热防护系统结构材料的特点,并简要介绍了电子束物理气相沉积设备的工作原理、结构及其工艺特点.着重评述了利用该工艺制备多种体系高温结构材料的研究现状,最后对未来的发展趋势作出了客观的评价与展望.  相似文献   

18.
The trade-off of strength and ductility of metals has long plagued materials scientists. To resolve this issue, great efforts have been devoted over the past decades to developing a variety of technological pathways for effectively tailoring the microstructure of metallic materials. Here, we review the recent advanced nanostructure design strategies for purposely fabricating heterogeneous nanostructures in crystalline and non-crystalline metallic materials. Several representative structural approaches are introduced, including (1) hierarchical nanotwinned (HNT) structures, extreme grain refinement and dislocation architectures etc. for crystalline metals; (2) nanoglass structure for non-crystalline alloys, i.e. metallic glasses (MGs); and (3) a series of supra-nano-dual-phase (SNDP) nanostructures for composite alloys. The mechanical properties are further optimized by manipulating these nanostructures, especially coupling multiple advanced nanostructures into one material. Particularly, the newly developed SNDP nanostructures greatly enrich the nanostructure design strategies by utilizing supra-nano sized crystals and MGs, which exhibit unique size and synergistic effects. The origins of these gratifying properties are discussed in this review. Furthermore, based on a comprehensive understanding of microscopic mechanisms, a broad vision of strategies towards high strength and high ductility are proposed to promote future innovations.  相似文献   

19.
王勇  王本庭  云志 《材料导报》2006,20(12):32-34
金属间化合物是一种介于金属与陶瓷之间的新型功能与结构材料,近年来在制备方面取得了长足的发展.综述了金属间化合物的若干制备方法,重点是机械合金化法、自蔓延高温合成法、喷射沉积法,简要叙述了上述方法的优点和不足之处.由于本身具有特殊性能,金属间化合物已作为一种新型催化剂被尝试性地应用在化学工程中.结合化学工程学科的特点与需要以及作者自己的研究心得,对金属间化合物的研发进行了探讨.  相似文献   

20.
Laser sintering is a newly well established additive manufacturing technique, which has higher capabilities to produce complex shapes models/parts in a short time period. In this technique, a solid model is directly produced according to computer aided design model, by fusing two adjacent layers together, with the interaction of laser light. These parts are widely used in industries like aerospace and automobile and for medical applications as well. This paper reviews the selective laser sintering process and its research progress with the use of metallic powders. The main focus of whole available research progress is to produce complex shape solid model/parts using different metallic materials having the desired mechanical as well as dimensional properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号