首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
目的 研究CoCrFeNi高熵合金组织和性能在添加Be后的变化,通过高熵合金固溶体相形成规律,设计从面心立方固溶体转变至含体心立方及金属间化合物的(CoCrFeNi)1-xBex系列高熵合金。方法 通过计算验证(CoCrFeNi)1-xBex系列高熵合金的成分是否落入固溶体区域,并对上述成分高熵合金组织和力学性能进行研究。结果 Be元素的原子数分数为4%时,高熵合金仍为单一的FCC相结构,随着Be元素含量的进一步增加,基体中出现BCC相和金属间化合物。Be的添加使得(CoCrFeNi)1-xBex高熵合金的屈服强度及显微硬度均大大提高,同时密度降低。结论 根据相形成规律设计的(CoCrFeNi)1-xBex系列高熵合金表明,适量添加Be元素可以改善CoCrFeNi高熵合金的综合物理力学性能。  相似文献   

2.
相对于传统的二元合金,多主元高熵合金(HEAs)通常由五种及以上元素组成,呈现出结构晶格畸变、原子缓慢扩散及组织高稳定性等特征。高熵合金作为材料研究领域的一种新型合金,极易获得热稳定性很高的固溶相和纳米结构,甚至可得到非晶相,其综合性能明显优于传统合金,因此,高熵合金具有很高的学术研究价值和工业应用潜力。材料的成分和组织决定了材料最终的性能,多主元成分设计使得高熵合金相组成较为复杂,如何通过理论计算相形成规律,从而准确地预测出给定成分高熵合金的相组成,对高熵合金材料设计至关重要。研究发现混合焓H_(mix)可对高熵合金中的相组成进行确定,但简单的混合焓参数已经不能满足多主元高熵合金相预测的准确性,更多参数在高熵合金发展进程中被提出。研究发现,原子半径差δ_r及熵/焓Ω(T_A)等参数可预测出高熵合金中的固溶体(SS)相和金属间化合物(IM)相,却无法预测固溶体的具体类型。然而,K_1~(Cr)(T_A)参数的补充提高了给定热处理温度下相预测的准确性,且热处理后SS相形成域的参数值变小,这表明IM相在热处理后形成了另一种相且影响了参数值;价电子浓度VEC判据可预测FCC、BCC型高熵合金的固溶体类型,但不适用于所有的高熵合金;电负性差ΔX可对大部分高熵合金(除含大量Al之外)的拓扑闭合相稳定性进行预测,且ΔX0.133时可预测出高熵合金中有拓朴闭合稳定相存在。为了更全面准确地预测高熵合金相组成,有学者提出了较为完善的CALPHAD计算机热力学相图预测模型,由于FCC比BCC结构的动力学效应大,采用CALPHAD方法预测FCC相组成精确性较差,但对BCC相的预测十分精确。而分子轨道理论仅用一个参数Md(合金化过渡金属d轨道的平均能级),就可以预测以镍基、钴基和铁基合金为基础高熵合金中固溶体与过渡金属所形成的TCP/GCP相。本文在传统合金相形成规律的基础上,通过对现有高熵合金相形成理论进行研究,阐明了高熵合金的相结构模型;总结出固溶体与金属间化合物,面心立方FCC、体心立方BCC和密排六方HCP结构的高熵合金,以及固溶体与第二相形成规律的理论预测模型;分析所有理论预测模型的优缺点,最终总结出一套较为完整的高熵合金相组成的预测流程,有利于初学者进行高熵合金的成分设计。  相似文献   

3.
人类社会的进步与发展对材料性能提出了越来越高的要求,这是激励人们探索新的材料设计理论并开发新材料体系的原动力。近年来,性能优异的新材料不断涌现,并相继成为研究热点,由高熵合金发展而来的高熵陶瓷就是典型代表之一。2004年,中国台湾清华大学叶均蔚和英国牛津大学Cantor两个课题组几乎同时提出了高熵合金(High-entropy alloys)的概念。他们发现将(近)等原子比的多种合金元素高温熔炼,容易形成金属原子随机分布的面心立方、体心立方和六角密堆等具有简单晶体结构的单相固溶体,阻止了金属间化合物的生成,显示出典型的高熵效应。此后人们进一步归纳出高熵合金的四大效应,即热力学上的高熵效应、晶体学上的晶格畸变效应、动力学上的迟滞扩散效应和性能上的“鸡尾酒”效应。与传统合金相比,高熵合金表现出良好的结构稳定性、优异的力学性能以及功能特性,引发了材料界研究高熵材料的热潮。  相似文献   

4.
目的 研究不同厚度的FeCoNiCrCu高熵合金涂层对Al/Mg双金属组织和力学性能的影响。方法 通过超音速火焰喷涂工艺在A356嵌体表面喷涂不同厚度的FeCoNiCrCu高熵合金涂层,采用消失模复合铸造工艺制备Al/Mg双金属,利用扫描电镜、EDS能谱及XRD衍射仪、维氏硬度测试仪和万能试验机对Al/Mg双金属界面微观组织和力学性能进行测试和分析。结果 未喷涂高熵合金涂层的Al/Mg双金属界面由共晶层和金属间化合物层组成,断裂位置主要位于金属间化合物层,裂纹从Al3Mg2扩展至共晶层结束,具有典型的脆性断裂特征,剪切强度仅为30.37 MPa。当高熵合金涂层厚度为5 μm时,Al/Mg双金属形成了Al3Mg2+ Mg2Si/AlxFeCoNiCrCu+FeCoNiCrCu+Al-Mg-Co-Ni混合相/δ-Mg+Al12Mg17共晶组织的复杂界面,断裂发生在高熵合金层与δ-Mg+Al12Mg17共晶组织的交界处,断裂面产生了一定程度的塑性变形,剪切强度为48.46 MPa,相对于无涂层的Al/Mg双金属提高了59.56%。当高熵合金涂层厚度为20 μm时,铝侧生成了AlxFeCoNiCrCu高熵合金,镁侧则只生成了少量Mg-Ni-Cu混合相,断裂发生在高熵合金涂层与镁基体交界处,剪切强度为39.69 MPa。结论 高熵合金涂层可以有效阻碍Al、Mg元素之间的扩散,从而显著抑制或完全阻止Al-Mg脆性金属间化合物的产生,大幅度降低界面层厚度。金属间化合物的减少和混合相对裂纹扩展的阻碍作用显著提高了Al/Mg双金属界面的剪切强度。  相似文献   

5.
依据多主元高熵合金的设计理念,采用真空电弧炉熔炼等摩尔比多主元高熵合金AlFeCuCoNiCr,研究合金的组织结构。研究发现:AlFeCuCoNiCr合金的铸态组织是典型的树枝晶,并有纳米析出相和非晶相形成;合金存在严重的成分偏析现象,铜偏聚于枝晶间;合金形成了简单的面心立方+体心立方(FCC+BCC)结构和少量金属间化合物。  相似文献   

6.
基于多主元设计理念的高熵合金(又称多主元合金)虽然组成元素复杂,但能形成简单结构的固溶体,并具有优异的性能,已成为当前高性能金属材料的研究热点之一。目前的研究主要集中在固溶体形成条件、成分种类、含量、组织结构及不同退火温度对合金的组织和力学性能的影响等方面。学者们还界定了形成固溶体时合金混合焓、原子半径及价电子浓度(VEC)的范围。当前的研究以CoCrFeNi基合金最为广泛,主要研究目标包括提高BCC型合金的塑性或FCC型合金的强度,以及开发具有良好的可铸性、易适应大规模生产的共晶高熵合金。通过降低晶粒尺寸、热处理和引入新元素等方法,使高熵合金产生晶界强化以及析出细小、弥散的第二相,从而有效地强化FCC基体。通过一系列的合金设计,研究出一些低成本、高性能的合金,进而也可用于一些高性能要求的零件或制备成高性能涂层。本文综述了合金元素Al、Cu、Ti、Mn、Mo、Pd、Nb及两种元素协同作用对铸态CoCrFeNi基高熵合金的相组成和力学性能的影响。通过对比发现,不同元素由于其原子半径、电负性以及与其他元素的结合力不同对高熵合金的相形成产生不同的影响,从而影响其力学性能。Al、Ti和Mo等原子半径较大元素的添加会产生固溶强化,使得合金的硬度增大。同时,Al元素的添加会因形成有序的B2相而产生第二相强化;部分合金还能形成共晶高熵合金。Ti和Mo元素由于与其他元素的混合焓较小容易形成复杂的化合物使得合金变脆。而Cu与其他元素混合焓较大,易优先在枝晶间析出。铸态下Mn含量的变化不影响合金的晶体结构,合金为FCC相。经过时效处理后,Mn含量高的合金有少量σ相析出。添加Nb元素后,合金由于Laves相的出现强度增加且变脆。此外,还对添加Pb元素后合金的饱和磁化性能以及部分合金的耐腐蚀性等进行了综述。本文可为高熵合金的成分设计及研究提供参考。  相似文献   

7.
汪燕青  刘兆刚 《材料导报》2014,(6):115-119,111
利用真空非自耗电弧炉熔炼了AlCrNbTiV等物质的量高熵合金铸锭、AlCrNb2Ti2V0.5非等物质的量高熵合金和AlCrNb5TiVSi六元合金。分别对这3种合金进行了OM、XRD、SEM和EDS分析;研究了合金中的物相组成、微观组织和成分分布规律。实验结果表明,AlCrNbTiV高熵合金和AlCrNb2Ti2V0.5高熵合金都只形成了BCC结构高熵固溶相,且未产生金属间化合物相。而AlCrNb5TiVSi合金尽管配位熵很高,但由于Si的电负性,生成了离散分布的Nb5Si3金属间化合物。对AlCrNbTiV高熵合金和AlCrNb2Ti2V0.5高熵合金在单个晶粒中的成分分布进行分析,发现在高熵效应作用下,合金各元素含量波动较小,平均偏差均小于2%(原子分数),但两种合金元素含量存在微弱的变化趋势,如Nb在晶粒中心的含量比晶粒边缘略高,而另一些元素如Cr则恰好相反,表明在凝固和形核过程中仍然不可忽略元素熔点和原子半径效应。  相似文献   

8.
高熵合金拥有优异的力学性能,包括高强度、高硬度、良好的耐蚀性和耐磨性等,作为结构材料应用极具潜力。对高熵合金力学性能优化的研究尽管仍处于探索阶段,但已经引起了广泛关注并取得了一些成果。传统上合金的强化机制可分为固溶强化、位错强化、细晶强化和第二相强化。考虑到高熵合金倾向于形成固溶体,固溶强化是一种行之有效的强化机制。可通过加入其中一种主元或者与主元半径差不多的元素形成置换固溶体(通常是过渡金属元素);也可以加入小半径元素如C、N、B等形成间隙固溶体。热机械处理是金属材料常见的预处理工艺,通过轧制等压力加工手段和再结晶退火能够很明显地提高位错密度以及细化晶粒尺寸,从而实现高熵合金的强韧化。第二相强化是近年来比较流行的强化方式。热力学分析可以有效帮助确定退火温度以获得第二相颗粒,甚至控制第二相的尺寸和形貌。位错与第二相颗粒以切过机制或绕过机制发生交互作用,从而提高合金的力学性能。除通过改变内部组织来提升性能外,通过表面处理也可实现强韧化。对塑性较好的高熵合金进行渗碳、渗氮和镀膜等处理通常可以获得表硬内韧的组织结构。渗碳渗氮对表层的硬化源于间隙固溶和第二相析出,镀膜的优化效果则源于膜与基体的紧密结合,可以同时表现出两者的性能优势。本文主要从内在强化机理的角度出发,论述了添加组元、热处理工艺等对高熵合金的强韧化效果。此外,还介绍了几种典型的表面处理对高熵合金强韧化的影响。  相似文献   

9.
以FeCoNiCrMn高熵合金为中间层,获得高质量的AZ31B/不锈钢电阻点焊接头。分析过渡区与两侧母材的反应扩散行为,检测接头性能并优化焊接工艺。结果表明:包含FeCoNiCrMn颗粒的过渡区成功连接镁、钢两母材。镁合金侧界面主要是颗粒周围反应生成的Fe4Al13金属间化合物;而不锈钢侧边界主要由(Fe,Ni)固溶体和Fe4Al13金属间化合物两部分组成。拉剪载荷F随焊接电流I和焊接压力P的增加,焊接时间t的延长,呈现出先升高后降低的趋势,在18.2~22.5 kA,15~35周波,2.0~10.6 kN的实验工艺范围内,添加高熵合金镁/钢点焊接头拉剪载荷在3.2 kN以上,最大拉剪载荷为5.605 kN,相比未添加高熵合金镁/钢点焊接头拉剪载荷提高了397%。高熵合金过渡层形成了大量(Fe,Ni)固溶体,减少Fe4Al13脆性金属间化合物的生成,有效提高了接头的力学性能。  相似文献   

10.
为了研究CrFeCoNiMo高熵合金的耐蚀性,采用熔铸法制备了Cr19Fe22Co21Ni25Mo13高熵合金,测试了该合金的铸态显微组织、物相组成并将该合金与304SS在耐蚀性方面进行了对比.结果 表明:CrFeCoNiMo高熵合金显微组织呈典型的树枝晶形态,其中树枝晶为典型的单相FCC结构固溶体,而枝晶间为包含有1个FCC相和1个FCC1相的混合结构固溶体;与相同腐蚀条件下的304SS相比,CrFeCoNiMo高熵合金在硫酸、盐酸、硝酸和氯化钠溶液中的耐蚀性均表现较好,腐蚀速率均较低.高熵合金内树枝晶区域无明显腐蚀,而枝晶间区域腐蚀严重,这主要是由于二者间的晶体结构存在差异.  相似文献   

11.
We review recent research developments in a special class of multicomponent concentrated solid solution alloys (CSAs) – of which the recently discovered high entropy alloys (HEAs) are exemplars – that offer a new paradigm for the development of next generation structural materials. This review focuses on the role of inherent extreme chemical complexity on the phase stability, electronic, transport, and mechanical properties of this remarkable class of disordered solid solution alloys. Both experimental observations and theoretical models indicate that the phase stability of HEAs goes beyond the original conjecture that these alloys are stabilized by configurational/mixing entropy; rather, it results from competition between the homogeneously disordered phase and phase separation/intermetallic compound formation. Although the number of single-phase HEAs with equiatomic composition is limited, those that do exist often exhibit remarkable electronic, magnetic, transport, and mechanical properties. For the mechanical response, we discuss the solution strengthening mechanism which governs the strength and deformation behaviors of the CSAs, as well as the increasing evidence that low stacking fault energies (deformation twinning) plays an important role in the low temperature strength and ductility of CrMnFeCoNi related alloys. We also review the current understanding of the role of the number and type of alloy elements in determining the electronic, magnetic, and transport properties, in particular the dominant role of magnetic interactions in the properties of 3d-transition metal based alloys. Finally, we emphasize that, despite rapid progress in characterization and understanding of the phase stability and physical/mechanical responses of CSAs, there remain significant challenges to fully exploring the new paradigm that these alloys represent.  相似文献   

12.
The alloy world could be divided into low-entropy (LEAs), medium-entropy (MEAs) and high-entropy alloys (HEAs) based on the configurational entropy at the random solution state. In HEAs, four core effects, i.e. high entropy, sluggish diffusion, severe lattice distortion and cocktail effects, are much more significant than low-entropy alloys in affecting phase transformation, microstructure and properties. In fact, the degree of the influence from these core effects more or less increases with increased mixing entropy. The trend is gradual from low-entropy alloys to high-entropy alloys. In this article, physical metallurgy of HEAs is discussed with the bridge connected to that of conventional alloys. As disordered and ordered solid solutions are the main constituent phases of alloys, the understanding of solid solutions is fundamental for the understanding of alloys. In addition, as dilute solid solutions have been well treated in current physical metallurgy, concentrated solid solutions from low-entropy to high-entropy alloys are focused in this article. Physical properties are especially emphasized besides mechanical properties.  相似文献   

13.
This paper reviews the recent research and development of high-entropy alloys (HEAs). HEAs are loosely defined as solid solution alloys that contain more than five principal elements in equal or near equal atomic percent (at.%). The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element. Up to date, many HEAs with promising properties have been reported, e.g., high wear-resistant HEAs, Co1.5CrFeNi1.5Ti and Al0.2Co1.5CrFeNi1.5Ti alloys; high-strength body-centered-cubic (BCC) AlCoCrFeNi HEAs at room temperature, and NbMoTaV HEA at elevated temperatures. Furthermore, the general corrosion resistance of the Cu0.5NiAlCoCrFeSi HEA is much better than that of the conventional 304-stainless steel. This paper first reviews HEA formation in relation to thermodynamics, kinetics, and processing. Physical, magnetic, chemical, and mechanical properties are then discussed. Great details are provided on the plastic deformation, fracture, and magnetization from the perspectives of crackling noise and Barkhausen noise measurements, and the analysis of serrations on stress–strain curves at specific strain rates or testing temperatures, as well as the serrations of the magnetization hysteresis loops. The comparison between conventional and high-entropy bulk metallic glasses is analyzed from the viewpoints of eutectic composition, dense atomic packing, and entropy of mixing. Glass forming ability and plastic properties of high-entropy bulk metallic glasses are also discussed. Modeling techniques applicable to HEAs are introduced and discussed, such as ab initio molecular dynamics simulations and CALPHAD modeling. Finally, future developments and potential new research directions for HEAs are proposed.  相似文献   

14.
1.IntroductionInthepastfewyearsthemeth0dsf0rempiricalandsemiempiricalcalculations0fpropertiesformet-alsandalloyshaveevolvedrapidly.Oneofthem0stsuccessfulmethodsistheembeddedatommethod(EAM)originallypresentedbyDawandBaskes[1J,butitsembeddedenergyandpairpotentialaregivenintheform0fsplinefunctions,suchanunanalyticalf0rmmakesthismodelverydifficulttobeappliedtoal1oys[2].J0hnsonhasdevelopedana1yticalEAMmode1sforfcc,bccandhcpmetal,[3~6j.Moreover,usingthefccanalyticalEAMmodel,J0hnsonhasca1culate…  相似文献   

15.
李安敏  史君佐  谢明款 《材料导报》2018,32(3):461-466, 472
高熵合金作为一类新型的合金,具有许多优于传统合金的性能,在诸多领域有广阔的应用前景。高熵合金现阶段的研究主要集中在其力学性能方面,它的高强度、高硬度、高耐磨性和耐腐蚀性等优点展现出了其作为在严酷条件下服役的结构材料的潜力,但目前对高熵合金的研究仍处于探索性阶段,所以研究高熵合金的力学性能具有重要的现实意义。主要综述了组分、制备工艺、热处理工艺、冷轧等对高熵合金的组织与力学性能的影响,并展望了高熵合金的应用前景。  相似文献   

16.
耐磨高熵合金具有主元多、强度高、硬度大、磨损率低和耐高温等特征,应用前景广阔,是近几十年发展起来的一种新型耐磨材料。围绕耐磨高熵合金的主要制备工艺与耐磨性能的影响因素两方面,对近年来耐磨高熵合金的主要研究进展进行了综述。重点阐述了固、液、气态成型的耐磨高熵合金制备技术,总结了影响高熵合金耐磨性的因素,包括金属元素与非金属元素在内的多种元素对高熵合金耐磨性能的影响,说明了高熵合金及其碳氮化物涂层耐磨性能的研究进展。耐磨高熵合金的制备工艺较多,应根据合金形态成分的不同选择合适的制备方法;通过添加金属或非金属元素诱导硬质相析出仍是提高合金耐磨性能的主要手段;有些高熵合金或高熵合金涂层在高温、润滑等条件下也能够表现出优异的耐磨性能。  相似文献   

17.
近年来,高熵合金成为金属材料领域的研究热点。高熵合金处于相图中心区域,具有广阔的合金成分空间和组织结构形成可能;成分和制备工艺的协同调控,能够获得更丰富的组织结构;非常规的化学结构有望突破传统抗磨、润滑合金的性能极限。本文讨论了耐磨高熵合金的分类,分析了化学活泼金属、软金属、难熔金属的添加对高熵合金抗磨、润滑性能的影响规律;总结了非金属元素和陶瓷相的添加对高熵合金基复合材料摩擦磨损性能的影响;综述了热处理和表面工程技术对高熵合金表面组织结构和摩擦磨损行为的作用;讨论了苛刻工况下抗磨润滑高熵合金的设计方法。对未来高熵合金在摩擦磨损领域的研究和应用进行了展望,高熵合金在解决传统合金的瓶颈问题上具有巨大潜力,如在极端工况下实现稳定润滑抗磨、保证特定功能作用下实现抗磨。  相似文献   

18.
近年来,高熵合金(HEAs)因其新颖的设计理念和优异的综合力学性能成为了新材料领域的研究热点之一。作为HEAs一个重要分支的难熔高熵合金(RHEAs)由于将高熔点难熔元素作为主要合金成分而具有优异的高温抗软化性能。难熔高熵合金在高温下具有良好的相稳定性,有望成为新型高温结构材料。相比于传统的高温合金,难熔高熵合金的成分范围更广,密度区间更大,抗氧化性也更好。在过去的十余年中,难熔高熵合金的研究已经取得了很大进展。许多合金和合金体系都已经进行了广泛的测试和表征,包括力学性能和氧化行为等方面,有关固溶强化、变形机制和氧化行为的新模型也正在出现并不断完善。计算机构建模型和模拟计算也逐渐应用于难熔高熵合金的研究,促进了难熔高熵合金的开发和发展。主要介绍了难熔高熵合金的成分设计,对比分析了其制备工艺和相组成,并讨论了其室温和高温时的力学性能及高温抗氧化性。最后总结了难熔高熵合金研究目前存在的问题和瓶颈,并对未来研究方向提出了建议。  相似文献   

19.
高熵合金(High-entropy alloys, HEA)由于具有优异的力学性能、抗高温氧化性能、耐腐蚀性能等优点,受到了越来越多学者的关注。目前高熵合金的制备一般采用传统的铸锻轧,这对于制备一些形状复杂的高端零部件和超细晶组织是一种严峻的挑战,而采用增材制造(Additive Manufacturing,AM)技术是解决上述问题的一个有效途径。重点阐述了国内外近年来在高熵合金增材制造材料种类、快速凝固非平衡组织演化、裂纹等成形缺陷、力学性能及成形特征方面的研究进展,为增材制造高熵合金进一步发展提供一定参考。最后,对增材制造高熵合金的研究进展进行了总结,并对增材制造高熵合金成分的设计提供了一定的思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号