首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An orthorhombic B–C–N compound was synthesized using an amorphous B–C–N precursor and a Li–B–N catalyst at 6 GPa and 1773 K. The results of energy dispersive spectrometry and electronic energy loss spectrometry suggest a stoichiometry of B:C:N = 1:3.3:1. In addition, the Li–B–N catalyst improves the crystallizations of the B–C–N compound, graphite and BN and therefore might be a profitable catalyst in ultrahigh pressure experiments.  相似文献   

2.
Transient liquid-phase bonding of a duplex stainless steel was performed with a Ni–Cr–B insert alloy. The microstructure of the joint region was investigated by cross-sectional and layer-by-layer characterization. According to the experimental studies, prior to completion of isothermal solidification, the bond microstructure can be expressed as γ-Fe + δ-Fe/γ-Fe + δ-Fe + BN/γ-Ni(Fe) + BN/γ-Ni + Cr-rich borides/γ-Ni + Ni3B + Cr-rich borides (CrB, CrB2, Cr2B3, Cr3B4, Cr5B3 and CrB4), from the base metal side to the bonded-interlayer side. Complete isothermal solidification occurred at 1090 °C within 3600 s. Only the γ-Ni solid solution phase was present in the bonded interlayer, and BN precipitates were not removed after isothermal solidification. The formation of secondary-phase precipitates might be responsible for the presence of peak microindentation hardness in the bond region.  相似文献   

3.
Fe–C–V and Fe–C–V–Si alloys of various C, V and Si compositions were investigated in this work. It was found that the phases present in both of these alloy systems were alloyed ferrite, alloyed cementite, and VCx carbides. Depending on the alloy composition the solidified microstructural constituents were granular pearlite-like, lamellar pearlite, or mixtures of alloyed ferrite + granular pearlite-like or granular pearlite-like + lamellar pearlite. In addition, it is shown that in Fe–C–V alloys the C/V ratio influences (a) the type of matrix, (b) the fraction of vanadium carbides, fv and (c) the eutectic cell count, NF. In Fe–C–V alloys, a relationship between the alloy content corresponding to the eutectic line was experimentally determined and can be described by where Ce and Ve are the carbon and vanadium composition of the eutectic. Moreover, in the Fe–C–V alloys (depending on the alloy chemistry), the primary VCx carbides crystallize with non-faceted or non-faceted/faceted interfaces, while the eutectic morphology is non-faceted/non-faceted with regular fiber-like structures, or it possesses a dual morphology (non-faceted/non-faceted with regular fiber-like structures + non-faceted/faceted with complex regular structures). In the Fe–C–V–Si system, the primary VCx carbides solidify with a non-faceted/faceted interface, while the eutectic is non-faceted/faceted with complex regular structures. In particular, spiral eutectic growth is observed when Si is present in the Fe–C–V alloys. In general, it is found that as the matrix constituent shifts from predominantly ferrite to lamellar pearlite, the hardness, yield and tensile strengths exhibit substantial increases at expenses of ductility. Moreover, Si additions lead to alloy strengthening by solid solution hardening of the ferrite phase and/or through a reduction in the eutectic fiber spacings with a decrease in the alloy ductility.  相似文献   

4.
In this paper, the precipitates formed during the tempering after quenching from temperature 1150 °C for 7.90Cr–1.65Mo–1.25Si–1.2V steels are investigated using an analytical transmission electron microscope (A-TEM).The study of this tempering is carried out in isothermal and anisothermal conditions, by comparing the results given by dilatometry and hot hardness.Tempering is performed in the range of 300–700 °C. Coarse primary carbides retained after heat treatment are V-rich MC and Cr–Mo-rich M7C3 types. In turn, it gives a significant influence on the precipitation of fine secondary carbides, that is, secondary hardening during tempering. The major secondary carbides are Cr–Mo–V-rich M′C (and/or) Cr–Mo-rich M2C type. The peak hardness is observed in the tempering range of 450–500 °C. In the end, we observe between 600 and 700 °C, that this impoverished changes the phase. At these high temperatures of tempering, we observe that there is a carbide formation of the types M6C developing at the expense of the fine M7C3 carbides previously formed.  相似文献   

5.
J.-H. Ahn  Y.J. Kim  B.K. Kim 《Materials Letters》2006,60(29-30):3747-3751
Ni–Zr–Ti–Si–Sn/Cu metallic glass (BMG) composites were fabricated by magnetic compaction of powder mixtures. A considerable plastic deformation took place without apparent failure during the dynamic compaction even at room temperature and at a high strain rate. The BMG particles retained their amorphous phase after the dynamic magnetic compaction at 450 °C. The resulting Ni52.65Zr28.71Ti13.57Si1.33Sn3.74/60% Cu composite exhibited a remarkable tensile ductility at room temperature combined with high strength: tensile elongation of 28% and ultimate tensile stress up to 1.1 GPa.  相似文献   

6.
ZnO/amorphous-BaTiO3 thin-films were prepared on glass substrates by a sol–gel process. DSC/TGA, XRD and AFM were used to analyze the thermolysis of the precursor and the crystal growth characteristics of ZnO, and IR spectroscopy was used to determine the presence of OH groups and CO impurities containing in the films. Violet emission centering at 418 and 438 nm was observed in room temperature PL spectra of the films annealed at 400–500 °C. The strongest violet emission was observed in the film annealed at 400 °C. The emission intensity reduces as the annealing temperature increases, and vanishes in the film annealed at 550 °C. All of the films contain OH and CO groups, and the films annealed at the temperature over 450 °C contain CO2 impurities, indicating the enhancing oxidation of the films. The vanishing of the violet emission is probably due to the improvement of the oxygen deficient of ZnO crystals.  相似文献   

7.
Boron modified silicon oxycarbides (SiBOCs) were prepared from sol–gel derived pre-ceramic polymeric gels followed by pyrolysis at 950 °C under nitrogen. As-prepared SiBOC was found to be amorphous in nature and partially crystallized to SiO2 at 1500 °C. The effect of boron incorporation on the crystallization of SiBOC was studied and the result revealed that the tendency to crystallization decreased with increasing boron content. This is due to the formation of Si–O–B bridges at higher temperatures, which retards the crystallization of SiO2, evidenced from FTIR studies. SiBOC also exhibited excellent oxidation resistance ability at high temperature.  相似文献   

8.
Cd–Te–In–O thin films are grown by pulsed laser deposition using a composite target of CdTe powder embedded in an indium matrix. Oxygen pressures range from 2.00 to 6.67 Pa at a substrate temperature of 420 °C. The structure, optical transmission and sheet resistance of the films are measured. Substitutional compounds with In2 − 2x(Cd,Te)2xO3 stoichiometry are found at high oxygen pressures. A ternary phase diagram of the CdO–In2O3–TeO2 system shows the relationship between the structure and the stoichiometry of the films. To evaluate film performance, a figure of merit is proposed based on the relationship between the integral photonic flux and the sheet resistance. The best figure of merit values corresponds to a sample prepared at 3.8 Pa O2 that consists of (In2O3)0.3(CdTe2O5)0.7 and exhibits an optical band gap of 3.0 eV. This sample is a suitable substrate for electrodeposition due to its good electrochemical stability.  相似文献   

9.
The aim of this work is to study the effect of cooling rate and subsequent hot consolidation on the microstructural features and mechanical strength of Al–20Si–5Fe–2X (X = Cu, Ni and Cr) alloys. Powder and ribbons were produced by gas atomization and melt spinning processes at two different cooling rates of 1 × 105 K/s and 5 × 107 K/s. The microstructure of the products was examined using optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The particles were consolidated by hot pressing at 400 °C/250 MPa/1 h under a high purity argon atmosphere and the microstructure, hardness and compressive strength of the compacts were evaluated. Results showed a profound effect of the cooling rate, consolidation stage, and transition metals on the microstructure and mechanical strength of Al–20Si–5Fe alloys. While microstructural refining was obtained at both cooling rates, the microstructure of the atomized powder exhibited the formation of fine primary silicon (~ 1 μm), eutectic Al–Si phase with eutectic spacing of ~ 300 nm, and δ-iron intermetallic. Supersaturated Al matrix containing 5–7 at.% silicon and nanometric Si precipitates (20–40 nm) were determined in the microstructure of the melt-spun ribbons. The hot consolidation resulted in coarsening of Si particles in the atomized particles, and precipitation of Si and Fe-containing intermetallics from the supersaturated Al matrix in the ribbons. The consolidated ribbons exhibited higher mechanical strength compared to the atomized powders, particularly at elevated temperatures. The positive influence of the transition metals on the thermal stability of the Al–20Si–5Fe alloy was noticed, particularly in the Ni-containing alloy.  相似文献   

10.
Multicomponent Ti–Si–B–N coatings were deposited on high-speed steel (HSS) substrates by reactive magnetron sputtering using a SHS TiB + 20 wt% Si target. The influences of the substrate temperature, bias voltage, and nitrogen partial pressure on the structure and the elemental compositions of the films were studied. The films were characterized by high-resolution transmission electron microscopy (HRTEM), Auger spectroscopy (AES), and X-ray diffraction (XRD). The results of HRTEM analysis indicated the formation of an ordered–disordered structure with fine crystalline grains of hexagonal Ti(B,N) x phase and amorphous integrain layers. The stoichiometry of the Ti(B,N) x phase was strongly affected by PVD process parameters. The films were characterized in terms of their microhardness and wear resistance. The reasons for the high value of microhardness appear to be the result of stoichiometric phase composition, compressive residual stress, and dense and fine microstructure of the Ti–Si–B–N coatings. The tribological wear test results indicated the superior wear-resistant properties of Ti–Si–B–N coatings compared to TiN and Ti(C,N) coatings.  相似文献   

11.
Y-α-SiAlON (Y1/3Si10Al2ON15) ceramics with 5 wt.%BaAl2Si2O8 (BAS) as an additive were synthesized by spark plasma sintering (SPS). The kinetic of densification, phase transformation sequences and grain growth during sintering process were investigated. Full densification could be achieved by 1600 °C without holding and using a heating rate of 100 °C min−1, but the transformation from α-Si3N4 to α-SiAlON is not completed simultaneously with the densification process. The equilibrium phase assemblage could be reached after SPS at 1800 °C for 5 min and the resultant material possesses self-reinforced microstructure with high hardness of 19.2 GPa and fracture toughness of 6.8 MPa m1/2. The complete crystallization of BAS is beneficial to the high temperature mechanical properties. The obtained could maintain the room strength up to 1300 °C.  相似文献   

12.
Boron nitride (BN) thin films were deposited at 296 K, 398 K, 523 K and 623 K by low power radio frequency plasma enhanced chemical vapor deposition with nitrogen (N2) and hydrogen diluted diborane (15% B2H6 in H2) source gases. Fourier transform infrared and UV–visible spectroscopies were used to investigate the stability and degradation of BN films under ambient air conditions. The action of moisture on the films is reduced with increasing substrate temperature (Ts) to the detriment of the film growth rate. This has been interpreted as related to the decrease in porosity and relative volume fraction of B–O containing disordered tissue at higher Ts. The thickness of the unstable films increases logarithmically with the air exposure time. Parallel to this, although the E04 gap increases logarithmically with time, the Tauc gap remains the same. The increase of subgap absorptions and the decrease of Tauc slope with time indicate reduction of structural order. Crystallites of ammonium borate hydrates, the main product of the chemical reactions, are initially formed within the bulk. At a later time, as a result of increased porosity and disorder, the film thickness decreases while the islands of micro-crystallites rapidly grow above the surface of the film. Stability dependence on other deposition parameters was also studied: it is found that the 1260/1360 cm−1 (O–B–O/B–N) infrared peak area ratio plays an indicator role to reveal the stability of BN films.  相似文献   

13.
Uniform Al2O3 films were deposited on silicon substrates by the sol–gel process from stable coating solutions. The technological procedure includes spin coating deposition and investigating the influence of the annealing temperature on the dielectric properties. The layers were studied by Fourier transform infrared spectroscopy and Scanning Electron Spectroscopy. The electrical measurements have been carried out on metal–insulator–semiconductor (MIS) structures. The C–V curves show a negative fixed charge at the interface and density of the interface state, Dit, 3.7 × 1011 eV− 1cm− 2 for annealing temperature at 750 °C.  相似文献   

14.
Single-phase perovskite 0.65 PMN–0.35 PT was achieved at low temperature by a conventional mixed oxide method. It was prepared by ball-milling a mixture of PbO(orthorhombic), TiO2, Nb2O5 and (MgCO3)4Mg(OH)2·5H2O instead of MgO and heat treatment at 800 °C for 2 h. The formation was studied by means of DSC, FT-IR, Coupled TG-Mass, XRD, and SEM. It proceeded via formation of PbO(tetragonal) and Pb2Nb2O7(P2N) intermediates to form perovskite phase. The pure perovskite PMN-PT powder was obtained in particle size of 0.5–0.8 μm, agglomerate-free, and pseudo-cube. The powder calcined at 600 °C was sintered to 97% T.D. at 900–1000 °C for 2 h and showed room temperature dielectric constant of 3200, loss of 1–2%, and specific resistance of 5 × 1011 Ω cm.  相似文献   

15.
Multiwalled carbon nanotubes were synthesized using Ni–Mo–Mg oxide catalyst prepared by sol–gel technique. Carbon nanotubes were formed in situ by the reduction of nickel oxide (NiO) and molybdenum oxide (MoO3) to Ni and Mo by a gas mixture of nitrogen, hydrogen and cyclohexane at 750 °C. Scanning Electron Microscopy (SEM) was used to confirm the formation of carbon nanotubes (CNTs). The pore size distribution of carbon nanotubes (CNTs) was investigated by N2 adsorption and desorption. It was found that the pore size fell into the mesopore range: 2 < d < 50 nm. Interpretation was also made using Raman spectroscopy, Diffuse reflectance spectroscopy, X-ray diffraction and ESR spectra. This method is found to produce a very high yield weighing over 20 times of the catalyst. Based on the experimental conditions and results obtained a possible growth mechanism of the carbon nanotubes is proposed.  相似文献   

16.
Zr–Ti–N film prepared by sputtering deposition has been employed as a potential diffusion barrier for Cu metallization. It is thought that the existing states of Ti and Zr in the films are Ti–N and Zr–N phase in Zr–Ti–N films. Material analysis by XRD, XPS and sheet resistance measurement reveal that the failure of Zr–N film is mainly due to the formation of Cu3Si precipitates at the Zr–N/Si interface by Cu diffusion through the grain boundaries or local defects of the Zr–N barrier layer into Si substrate. In conjunction with sheet resistance measurement, XRD and XPS analyses, the Cu/Zr–Ti–N/Si contact system has high thermal stability at least up to 700 °C. The incorporation of Ti atoms into Zr–N barrier layer was shown to be beneficial in improving the thermal stability of the Cu/barrier/Si contact system.  相似文献   

17.
The wetting behavior in the B4C/(Fe–C–B) system was investigated in order to clarify the role of Fe additions on the sinterability of B4C. Iron and its alloys with C and B react with the boron carbide substrate and form a reaction zone consisting of a fine mixture of FeB and graphite. The apparent contact angles are relatively low for the alloys with a moderate concentration of the boron and carbon and allow liquid phase sintering to occur in the B4C–Fe mixtures. A dilatometric study of the sintering kinetics confirms that liquid phase sintering actually takes place and leads to improved mass transfer. A thermodynamic analysis of the ternary Fe–B–C system allows accounting for the experimental observations.  相似文献   

18.
New complex oxides having powellite (CaMoO4) type structure in the Ca–R–Nb–Mo–O system (R = Y, La, Nd, Sm or Bi) were prepared employing the method of solid state reaction between the component oxides at high temperature (1000–1100 °C). The new compounds, CaRNbMoO8 (R = Y, La, Nd, Sm, Bi) are colorless and electrical insulators. The dielectric constants (K at 1 MHz) of these compounds are in the range 14–33 and K shows very little variation in the temperature range 30–100 °C. Their temperature coefficient of dielectric constant (TCK) is negative, which varies from − 21 to − 220 ppm/°C.  相似文献   

19.
A series of W–Si–C (4–5 at.%)–N nanocomposite coatings with different C contents have been deposited on Si wafer substrates by reactive magnetron sputtering of W–Si–C composite target in Ar + N2 mixed atmosphere. Microstructure characteristics and mechanical properties of W–Si–C–N coatings were investigated in this paper. Results exhibited that W–Si–C–N coatings possess nanocomposite microstructure where nano-crystallites W2(C, N) embedded in amorphous matrix of Si3N4/CNx/C. As the C content increased, the hardness and Youngs’ modulus of the W–Si–C–N coatings first increased and then decreased, reaching the maximum value of approximate 36 GPa and 382 GPa, respectively, for coatings containing 11.1 at.% C. All the coatings are in compressive stress state, ranging from 0.8 to 2.0 GPa. In addition, friction coefficient of the W–Si–C–N coatings considerably decreased with the increase of C content.  相似文献   

20.
Al–20Si–5Fe–2X (X = Cu, Ni and Cr) ribbons were produced by melt-spinning and consolidated by hot pressing at 400 °C for 60 min. The microstructure of the ribbons and the consolidated alloys was investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD) method, and transmission electron microscopy (TEM). The hardness and compressive strength of the specimens at ambient and elevated temperatures were examined. The microstructure of the ribbons exhibited featureless and dendritic zones. Results of XRD and TEM showed formation of spherically shaped Si particles with an average diameter of 20 nm. Ultrafine Si (110–150 nm) and iron-containing intermetallic particles were noticed in the microstructure of the consolidated ribbons. An improved strength was achieved by alloying of Al–20Si–5Fe with Cu, Ni, and Cr. Nickel was found to be the most effective element in increasing the maximum stress, particularly at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号