首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, glucose biosensor is fabricated with immobilization of glucose oxidase (GOx) in platinum and silica sol. The glucose biosensor combined with Pt and SiO2 nanoparticles could make full use of the properties of nanoparticles. A set of experimental results indicates that the current response for the enzyme electrode containing platinum and silica nanoparticles increases from 0.32 µA cm− 2 to 33 µA cm− 2 in the solution of 10 mM β-D-glucose. The linear range is 3 × 10− 5 to 3.8 × 10− 3 M with a detection limit of 2 × 10− 5 M at 3σ. The effects of the various volume ratios of Pt and SiO2 sols with respect to the current response and the stability of the enzyme electrodes are studied.  相似文献   

2.
The mesoporous silica sieve MCM-41 containing methylene blue (MB) provides a suitable immobilization of biomolecule matrix due to its uniform pore structure, high surface areas, good biocompatibility and nice conductivity. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the MB modified MCM-41/PVA composite film has been developed. Laccase from Trametes versicolor is assembled on a composite film of MCM-41 containing MB/PVA modified Au electrode and the electrode is characterized with respect to transmission electron microscopy (TEM) and scanning electron microscopic (SEM), Cyclic voltammetry (CV), response time, detection limit, linear range and activity of laccase. The laccase modified electrode remains good redox behavior in pH 4.95 acetate buffer solution, at room temperature in present of 0.1 mM catechol. The response time (t90%) of the modified electrode is less than 4 s for catechol. The detection limit is 0.331 µM and the linear detect range is about from 4.0 µM to 87.98 µM for catechol with a correlation coefficient of 0.99913(S/N = 3). The apparent Michaelis–Menten (KMapp) is estimated using the Lineweaver–Burk equation and the KMapp value is about 0.256 mM. This work demonstrated that the mesoporous silica MCM-41 containing MB provides a novel support for laccase immobilization and the construction of biosensors with a faster response and better bioactivity.  相似文献   

3.
A plasticized poly (vinyl chloride) membrane electrode based on 1,3-bis(2-methoxybenzene)triazene (MBT) for highly selective determination of mercury(II) has been developed. The electrode showed a good Nernstian response (30.2 ± 0.3 mV decade− 1) over a wide concentration range (1.0 × 10− 7−1.0 × 10− 2 mol L− 1). The limit of detection was 5.0 × 10− 8 mol L− 1. The electrode has a response time about 15 s and can be used for at least 1 month without observing any deviation from Nernstain response. The proposed electrode revealed an excellent selectivity toward mercury(II) ion over a wide variety of alkali, alkaline earth, transition, and heavy metal ions and could be used in the pH range 2.6–4.2. The electrode was used in the determination of Hg2+ in aqueous samples and as an indicator electrode in potentiometric titration of Hg(II) ions.  相似文献   

4.
This paper deals with the selection of experimental conditions and how the signals obtained in these conditions influence the fitted Partial Least Squares calibration model. The multivariate signals come from a flow analysis system with amperometric detection when determining sulfadiazine, sulfamerazine and sulfamethazine in milk.The solution (carrier plus analyte) was pumped through the system to provide a continuous supply of analyte to the cell. The detector was programmed for a scan mode operation being the multivariate signal the hydrodynamic voltammogram. To obtain an analytical signal of enough analytical quality, the Net Analyte Signal and its standard deviation have been optimised by using an experimental design. The conflicting behaviour of the two responses has been solved by estimating the Pareto-optimal front.The multivariate signals recorded in the optimal conditions found have been calibrated by Partial Least Squares regression and their figures of merit validated according to the criteria established in European Decision 2002/657/EC.In relation to the permitted limit, 100 µg l− 1 in milk, for the total content of sulfonamides established in the Commission Regulation EC no. 281/96 the proposed method has a decision limit of 109.1 µg l− 1 and the capability of detection is 117.9 µg l− 1 for both probability of false non-compliance and of false compliance equal to 5%. A recovery of 86.5% ± 2.4% (n = 5) has been obtained.  相似文献   

5.
Lin Z  Sun J  Chen J  Guo L  Chen Y  Chen G 《Analytical chemistry》2008,80(8):2826-2831
A new electrochemiluminescent (ECL) biosensor based on an electrically heated carbon paste electrode (HCPE) that was surface modified by xanthine oxidase (XOD) was designed and constructed in this work. It was found that the ECL intensity of luminol could be enhanced at the surface of XOD/HCPE by adding hypoxanthine (HX) to the solution, and there was a linear relationship between the ECL intensity and the concentration of HX. On the basis of this, an ECL enzyme biosensor can thus be developed to detect HX. However, because the activity of XOD is highly dependent on temperature, the biosensor is very sensitive to the temperature of the electrode. Also, because the temperature of the electrode may also affect the diffusion and convection of the luminescent compounds near the electrode surface, a suitable temperature for XOD/HCPE has to be controlled to achieve the best ECL signal. The key feature of the designed biosensor is that the temperature of the electrode is controllable so the most suitable temperature for the enzyme reaction can be obtained. The obtained results showed that the ECL enzyme biosensor exhibited the best sensitivity at an electrode temperature of 35 degrees C for the detection of HX. The detection limit was 30-fold lower than that at room temperature (25 degrees C).  相似文献   

6.
An amperometric xanthine biosensor was prepared by immobilizing xanthine oxidase (XOx) on the surface of a platinum (Pt) disk electrode. The Pt electrode was first covered with a polyelectrolyte multilayer (PEM) film composed of poly(allylamine hydrochloride) (PAH) and poly(vinyl sulfate) (PVS) to block the Pt surface from the access of uric acid, a reaction product of the XOx-catalyzed oxidation reaction of xanthine, because uric acid can be electrochemically oxidized on the Pt electrode to induce interference. The PEM film-covered Pt electrode was further modified with a XOx-containing multilayer film composed of XOx and poly(dimethyldiallylammonium chloride) (PDDA). The xanthine biosensors thus prepared can be used successfully for detecting xanthine in the concentration range of 3–300 μM. The output current of the sensors depended on the number of the XOx/PDDA layers in the film. The PAH/PVS layer was effective to eliminate the uric acid interference.  相似文献   

7.
An accurate, safe, environmentally friendly, fast and sensitive electrochemical biosensors were developed to detect xanthine in serum. The metal‐organic framework ZIF‐8 was synthesised and elemental gold was supported on the surface of ZIF‐8 by reduction method to synthesise Ag‐ZIF‐8. The mesoporous carbon material and the synthesised Ag‐ZIF‐8 were, respectively, applied to a glassy carbon electrode to construct biosensors. The constructed biosensor has a good linear relation in the range of 1–280 μmol l−1 of xanthine and the detection limit is 0.167 μmol l−1. The relative standard deviation value in serum samples was <5%, and the recoveries were 96–106%, indicating the good selectivity, stability and reproducibility of this electrochemical biosensor.Inspec keywords: zeolites, electrochemical sensors, voltammetry (chemical analysis), mesoporous materials, biosensors, gold, reduction (chemical), nanosensors, nanofabrication, organic compounds, electrochemical electrodes, carbon, nanoparticlesOther keywords: xanthine, detection limit, serum samples, zeolitic imidazolate framework‐8, sensitive electrochemical biosensors, metal‐organic framework ZIF‐8, elemental gold, reduction method, mesoporous carbon material, glassy carbon electrode, linear relation, ordered mesoporous carbon, Ag, C  相似文献   

8.
Bending strength and the effective modulus of atmospheric ice accumulated in a closed loop wind tunnel at temperatures − 6 °C, − 10 °C and − 20 °C with a liquid water content of 2.5 g/m3 have been studied at different strain rates. More than 120 tests have been conducted. Ice samples, accumulated at each temperature, have been tested at the accumulation temperature. In addition, tests have been performed at temperatures of − 3 °C and − 20 °C, for the ice accumulated at − 10 °C. These tests showed a clear dependency of bending strength of atmospheric ice on test temperature at low strain rates. Strain rate effects are implied because the spread in bending strength for the different temperatures diminishes as strain rate increases. The results also reveal that, in most cases, the effective modulus of atmospheric ice increases with increasing strain rate. The bending strength of atmospheric ice accumulated at − 10 °C has been found to be greater than that of ice accumulated at − 6 °C and − 20 °C. The results show that the effective modulus of ice accumulated at − 20 °C at higher strain rates is less than that of the two other types.  相似文献   

9.
In this work, undoped amorphous silicon layers were deposited on n-type AIC seed films and then annealed at different temperatures for epitaxial growth. The epitaxy was carried out using halogen lamps (rapid thermal process or RTP) or a tube conventional furnace (CTP). We investigated the morphology of the resulting 2 µm thick epi-layers by means of optical microscopy. An average grain size of about 40 µm is formed after 90 s annealing at 1000 °C in RTP. The stress and degree of crystallinity of the epi-layers were studied by micro-Raman Spectroscopy and UV–visible spectrometer as a function of annealing time. The presence of compressive stress is observed from the peak position which shifts from 520.0 cm− 1 to 521.0 cm− 1 and 522.3 cm− 1 after CTP annealing for 10 min and 90 min, respectively. It is shown that the full width at half maximum (FWHM) varies from 9.8 cm− 1 to 15.6 cm− 1, and the magnitude of stress is changing from 325 MPa to 650 MPa. Finally, the highest crystallinity is achieved after annealing at 1000 °C for 90 min in a tube furnace exhibiting a crystalline fraction of 81.5%. X-ray diffraction technique was used to determine the preferential orientation of the poly-Si thin films formed by SPE technique on n+ type AIC layer. The preferential orientation is 100 for all annealing times at 1000 °C.  相似文献   

10.
P.H. Tai  C.H. Jung  Y.K. Kang  D.H. Yoon   《Thin solid films》2009,517(23):129-6297
12CaO·7Al2O3 electride (C12A7:e) doped indium tin oxide (ITO) (ITO:C12A7:e) thin films were fabricated on a glass substrate by an RF magnetron co-sputtering system with increasing number of C12A7:e chips (from 1 to 7) and at various oxygen partial pressure ratios. The optical transmittance of the ITO:C12A7:e thin film was higher than 70% in the visible wavelength region. In the electrical properties of the thin film, a decrease of the carrier concentration from 2.6 × 1020 cm− 3 to 2.1 × 1018 cm− 3 and increase of the resistivity from 1.4 × 10− 3 Ω cm to 4.1 × 10− 1 Ω cm were observed with increasing number of C12A7:e chips and oxygen partial pressure ratios. It was also observed that the Hall mobility was decreased from 17.27 cm2·V− 1·s− 1 to 5.13 cm2·V− 1·s− 1. The work function of the ITO thin film was reduced by doping it with C12A7:e.  相似文献   

11.
A sensitive electrochemical method was described for voltammetric determination of ethamsylate at a glassy carbon electrode (GCE) coated with a nano-material thin film. In this work, a nanometer material, namely, multi-wall carbon nanotubes (MWCNT) was dispersed successfully into water in the presence of dihexadecyl hydrogen phosphate (DHP) and a MWCNT–DHP composite film was conveniently obtained on the GCE surface. The electrochemical behavior of ethamsylate at this modified electrode was investigated and a pair of reversible redox peak was observed. Compared with the electrochemical response of ethamsylate at the bare GCE, the separation of peak potential (ΔEp) of ethamsylate decreased obviously from 438 to 40 mV and the current density of redox peaks increased greatly. Based on this, differential pulse voltammetry (DPV) was employed to determine ethamsylate. Various experimental parameters such as pH value of the supporting electrolyte, the amount of modifier and so on were optimized. Under optimal conditions, a linear response of ethamsylate was obtained in the range from 1.0 × 10− 6 to 2.0 × 10− 5 mol/L, and the detection limit was 6.0 × 10− 7 mol/L. The proposed method was successfully applied to detect ethamsylate in pharmaceutical samples.  相似文献   

12.
Tungsten trioxide (WO3) electrochromic coatings have been formed on indium tin oxide-coated glass substrates by aqueous routes. Coating sols are obtained by dissolving tungsten powder in acetylated (APTA) or plain peroxotungstic acid (PTA) solutions. The structural evolution and electrochromic performance of the coatings as a function of calcination temperature (250 °C and 400 °C) have been reported. Differential scanning calorimetry and X-ray diffraction have shown that amorphous WO3 films are formed after calcination at 250 °C for both processing routes; however, the coatings that calcined at 400 °C were crystalline in both cases. The calcination temperature-dependent crystallinity of the coatings results in differences in optical properties of the coatings. Higher coloration efficiencies can be achieved with amorphous coatings than could be seen in the crystalline coatings. The transmittance values (at 800 nm) in the colored state are 35% and 56% for 250 °C and 400 °C-calcined coatings, respectively. The electrochemical properties are more significantly influenced by the method of sol preparation. The ion storage capacities designating the electrochemical properties are found in the range of 1.62–2.74 × 10− 3 (mC cm− 2) for APTA coatings; and 0.35–1.62 × 10− 3 (mC cm− 2) for PTA coatings. As a result, a correlation between the microstructure and the electrochromic performance has been established.  相似文献   

13.
Self-diffusion of silicon in magnetron sputtered silicon carbide films deposited on different substrates (crystalline silicon and glassy carbon) is investigated. Since crystallization of amorphous silicon carbide films strongly depends on the substrate, the diffusivity of silicon is expected to depend on the substrate as well. Isotope hetero-structures and secondary ion mass spectrometry were used for analysis. For amorphous samples an upper limit of the diffusivity of 1 × 10− 21 m2/s is derived at 1100 C°. For crystallized films diffusivities between 1350 °C and 1600 °C are found to be not significantly different for the two types of substrates. For samples deposited on glassy carbon substrates an activation enthalpy ΔHD = (8.7 ± 0.9) eV was found for the self-diffusion of Si. The consequences of our findings for crystallization are discussed.  相似文献   

14.
In cold regions, biodegradation of fuel spills can take a prolonged period of time. Conventional fuels and crude oil contain contaminants such as aromatics and PAH which can pose risks to humans and the environment. The goal of the present study was therefore to investigate the biological degradation of an alternative synthetic fuel, Syntroleum, which is less toxic and, as shown in this study, more easily biodegradable than conventional diesel fuel. Use of alternative fuels such as Syntroleum would be especially beneficial in sensitive regions where spills of conventional fuel are highly undesirable. Gravel and sand from Interior Alaska were spiked with diesel and synthetic diesel fuel (arctic-grade Syntroleum). After adding an inoculum, samples were incubated in the laboratory at different temperatures (6 °C and 20 °C), contamination levels (2000 mg and 4000 mg of fuel/kg dry soil), nutrient dosages (300 mg N/kg soil and 0 mg N/kg soil) and moisture contents (2%, 4%, 8% and 12% gravimetric water content). The objective of this research was to investigate the effect of physical and chemical environmental conditions on the biodegradability of contaminants and to determine optimal conditions for biodegradation by indigenous microorganisms. The respiration rate (CO2 production) was measured as an indicator of microbial activity and mineralization of contaminants, and complemented by analysis for hydrocarbons at the end of the experiment by gas chromatography/mass spectrometry. Both fuel types were biodegraded, with up to 75% mineralization after 17 weeks. The faster degradation rate was achieved in Syntroleum-contaminated soils with a degradation-rate constant of 0.0064–0.0106 d− 1 at 20 °C. At 6 °C, diesel fuel showed minimal degradation during several short-term studies (4–6 weeks), less than 5% total mineralization of the hydrocarbons in the fuel. The average degradation-rate constant for Syntroleum at 6 °C was 0.0016 d− 1 during a 4-week study, while the degradation-rate constants became much higher (0.0045–0.005 d− 1) for the long-term experiments (12–17 weeks), resulting in significant mineralization of total carbon present. The different moisture contents in the sandy soil showed no significant impact on respiration. The addition of fertilizer was essential to achieve good degradation rates. After the end of the 17-week experiment, the recovered contaminant was approximately 50% less in the case of Syntroleum when nutrients were added to the soil as compared with nutrient-deficient conditions. Respiration rates were higher in sand than in gravel, which may be due to differences in soil porosity and the available surface area for more even hydrocarbon distribution. Degradation rates varied significantly over time. A first-order model, which used different rate constants for three growth phases, was able to model cumulative carbon dioxide production quite well over a period of four months. In the carbon mass balance, the sum of the diesel range organics recovered from the soil plus the produced carbon dioxide accounted for approximately 30–85%. The remaining amount of carbon either was incorporated into biomass, degraded incompletely, or evaporated.  相似文献   

15.
LiOH·H2O, Co(NO3)2·6H2O and NH4VO3 were used to prepare nano-crystalline LiCoVO4 by 150 °C solvothermal reaction in isopropanol for 10–360 h and subsequent calcination at 300–500 °C for 6 h. XRD, TEM and selected area electron diffraction (SAED) revealed the presence of nano-crystalline LiCoVO4 with inverse spinel structure. The V–O stretching vibration modes of VO4 tetrahedrons were detected by FTIR over the range 617–835 cm− 1 and by Raman spectrometer at 805.7 and 783.1 cm− 1. Co, V and O were detected by EDX. TGA of solvothermal products shows weight loss due to the evaporation and decomposition processes at 40–648 °C.  相似文献   

16.
The kinetics of hydroxyapatite (HAP) crystallization on the polyaminoacids polyglycine, polytyrosine, polymethionine, was investigated by the constant composition technique. The apparent order for the crystallization process was found to be 2, indicative of a surface diffusion control mechanism. There are three possible mechanisms for critical nucleus formation with size n* = 3 ± 1 as defined by computational chemistry calculations at 310 K. The calculated surface energy from kinetic data for the growing HAP phase was 109 ± 15 mJ m− 2.  相似文献   

17.
Two technological strategies to generate patterned diamond growth have been tested. The diamond micro-structures (i.e. linear stripes and 5 µm narrow channels) were grown in the thickness of 450 nm on Si/SiO2 substrates by a microwave plasma chemical vapor deposition process. Strategy 1, employing a metal mask, resulted in unsatisfying patterned diamond growth due to instability of metal mask. Strategy 2 was based on a direct lithographic patterning of the seeding layer and resulted in a strongly selective, homogenous, and compact growth of diamond on the polymer-coated seeding patterns. This is assigned to the high seeding yield. The diamond micro-structures formed in this way exhibit surface conductivity of 10− 7 (Ω/□)− 1 as assessed by IV characteristics. The observed results appear promising for the development of directly grown diamond-based transistors.  相似文献   

18.
Convection heat transfer to spherical particles inside a hydrofluidisation freezing unit was investigated. The unit contained a food tank with a perforated bottom plate to create agitating jets. An aqueous solution of 30% ethanol+20% glucose was used as the refrigeration medium in a temperature range of −20 to 0 °C and flow rates from 5 to 15 l min−1. The lumped capacitance method was applied on cooling profiles of aluminium spheres of 5–50 mm to obtain surface heat transfer coefficients. Coefficients were within a range of 154–1548 W m−2 °C−1, and depended on diameter, flow rate, refrigeration temperature and fluid agitation level. The agitation due to jets was accounted for by means of an agitation Reynolds number in a Nusselt correlation A large variability of measured surface heat transfer coefficients was observed. This could be attributed to non-constant flow and turbulence fields in the refrigeration medium. The value of the heat transfer coefficient was compared to values determined on strawberries.  相似文献   

19.
New complex oxides having powellite (CaMoO4) type structure in the Ca–R–Nb–Mo–O system (R = Y, La, Nd, Sm or Bi) were prepared employing the method of solid state reaction between the component oxides at high temperature (1000–1100 °C). The new compounds, CaRNbMoO8 (R = Y, La, Nd, Sm, Bi) are colorless and electrical insulators. The dielectric constants (K at 1 MHz) of these compounds are in the range 14–33 and K shows very little variation in the temperature range 30–100 °C. Their temperature coefficient of dielectric constant (TCK) is negative, which varies from − 21 to − 220 ppm/°C.  相似文献   

20.
New electroluminescent material, namely zinc(2,2′ bipyridine)8-hydroxyquinoline [Zn(Bpy)q] has been synthesized and characterized. A solution of Zn(Bpy)q showed absorption maxima at 382 nm and 342 nm in toluene solution attributed to π − π transition. The photoluminescence spectrum in toluene solution showed peak at 545 nm. The material was stable up to 350 °C. Organic light emitting diode (OLED) fabricated with the structure ITO/α-NPD/Zn(Bpy)q/Alq3/LiF/Al exhibits a broad electroluminescence peak at 548 nm. The maximum current efficiency of OLED was 1.34 cd/A at 5 V and the maximum power efficiency 0.84 lm/W at 5 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号