首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
软硬件划分是软硬件协同设计的关键环节,划分的结果直接影响目标系统的设计质量。因此,对于一个给定的应用程序,为了使得目标系统快速执行且成本低廉,合理的划分策略十分重要。由于单个任务具有多种不同的硬件实现方式,与传统的单一硬件实现方式的软硬件划分问题相比,多选择的软硬件划分更能客观地反映现实应用。这导致问题的求解更具挑战性,它们已被证明是NP完全问题。基于多核处理器片上系统并针对任务图为二叉树的应用,建立了多选择软硬件划分问题的计算模型,并提出了解决该问题的动态规划算法。实验结果表明,当问题规模适中时,所提动态规划算法能够有效地获得精确解,并展示了算法的计算能力与硬件面积限制之间的关系。  相似文献   

2.
Hardware/software co-design for particle swarm optimization algorithm   总被引:1,自引:0,他引:1  
This paper presents a hardware/software (HW/SW) co-design approach using SOPC technique and pipeline design method to improve design flexibility and execution performance of particle swarm optimization (PSO) for embedded applications. Based on modular design architecture, a Particle Updating Accelerator module via hardware implementation for updating velocity and position of particles and a Fitness Evaluation module implemented either on a soft-cored processor or Field Programmable Gate Array (FPGA) for evaluating the objective functions are respectively designed to work closely together to carry out the evolution process at different design stages. Thanks to the design flexibility, the proposed approach can tackle various optimization problems of embedded applications without the need for hardware redesign. To further improve the execution performance of the PSO, a hardware random number generator (RNG) is also designed in this paper in addition to a particle re-initialization scheme to promote exploration search during the optimization process. Experimental results have demonstrated that the proposed HW/SW co-design approach for PSO algorithms has good efficiency for obtaining high-quality solutions for embedded applications.  相似文献   

3.
This paper describes the development of efficient hardware/software (HW/SW) neuro-fuzzy systems. The model used in this work consists of an adaptive neuro-fuzzy inference system modified for efficient HW/SW implementation. The design of two different on-chip approaches are presented: a high-performance parallel architecture for offline training and a pipelined architecture suitable for online parameter adaptation. Details of important aspects concerning the design of HW/SW solutions are given. The proposed architectures have been implemented using a system-on-a-programmable-chip. The device contains an embedded-processor core and a large field programmable gate array (FPGA). The processor provides flexibility and high precision to implement the learning algorithms, while the FPGA allows the development of high-speed inference architectures for real-time embedded applications.  相似文献   

4.
Efficient heuristic and tabu search for hardware/software partitioning   总被引:1,自引:0,他引:1  
Hardware/software (HW/SW) partitioning is a crucial step in HW/SW codesign that determines which components of the system are implemented on hardware and which ones on software. It has been proved that the HW/SW partitioning problem is NP-hard. In this paper, we present two approaches for HW/SW partitioning that aims to minimize the hardware cost while taking into account software and communication constraints. The first is a heuristic approach that treats the HW/SW partitioning problem as an extended 0–1 knapsack problem. In the second approach, tabu search is used to further improve the solution obtained from the proposed heuristic algorithm. Experimental results show that the proposed algorithms outperform a recently reported work by up to 28 %.  相似文献   

5.
王璞  武继刚 《计算机科学》2012,39(1):290-294
软硬件划分是软硬件协同设计的关键环节,它决定系统中哪些组件由软件实现,哪些由硬件实现。软硬件划分问题已被证明是NP完全问题。将一类软硬件划分问题看作变异的0-1背包问题,在求解背包问题的算法基础上构造出软硬件划分问题的优质启发解。此外,采用禁忌搜索(Tabu Search)算法对求得的启发解进行改进,在软件开销和通信开销满足一定约束的条件下,使得硬件开销尽可能小。实验结果证明,所提算法对当前最新算法的改进最大可达到28%。  相似文献   

6.
This work aims to pave the way for an efficient open system architecture applied to embedded electronic applications to manage the processing of computationally complex algorithms at real-time and low-cost. The target is to define a standard architecture able to enhance the performance-cost trade-off delivered by other alternatives nowadays in the market like general-purpose multi-core processors. Our approach, sustained by hardware/software (HW/SW) co-design and run-time reconfigurable computing, is synthesizable in SRAM-based programmable logic. As proof-of-concept, a run-time partially reconfigurable field-programmable gate array (FPGA) is addressed to carry out a specific application of high-demanding computational power such as an automatic fingerprint authentication system (AFAS). Biometric personal recognition is a good example of compute-intensive algorithm composed of a series of image processing tasks executed in a sequential order. In our pioneer conception, these tasks are partitioned and synthesized first in a series of coprocessors that are then instantiated and executed multiplexed in time on a partially reconfigurable region of the FPGA. The implementation benchmark of the AFAS either as a pure software approach on a PC platform under a dual-core processor (Intel Core 2 Duo T5600 at 1.83 GHz) or as a reconfigurable FPGA co-design (identical algorithm partitioned in HW/SW tasks operating at 50 or 100 MHz on the second smallest device of the Xilinx Virtex-4 LX family) highlights a speed-up of one order of magnitude in favor of the FPGA alternative. These results let point out biometric recognition as a sensible killer application for run-time reconfigurable computing, mainly in terms of efficiently balancing computational power, functional flexibility and cost. Such features, reached through partial reconfiguration, are easily portable today to a broad range of embedded applications with identical system architecture.  相似文献   

7.
This paper describes the implementation of a reconfigurable hardware-based genetic algorithm (HGA) accelerator using the hardware-software (HW/SW) co-design methodology. This HGA is coupled with a unique TRNG that extracts random jitters from a phase lock loop (PLL) to ensure proper GA operation. It is then applied and benchmarked with several case studies, which include the optimization of a simple fitness function, a constrained Michalewicz function, and the tuning of parameters in finger-vein biometrics. A HGA solution is necessary in systems that demand high performance during the optimization process. However, implementations that are completely designed in hardware will result in a very rigid architecture, making it difficult to reconfigure the system for use in different applications. This paper aims to solve this issue by proposing a HGA design that provides reconfigurability and flexibility by moving problem-dependent processes into software. The prototyping platform used is an Altera Stratix II EP2S60 FPGA prototyping board with a clock frequency of 50 MHz. The HW/SW co-design technique is applied, and system partitioning is done based on aspects such as system constraints, operational intensity, process sequencing, hardware logic utilization, and reconfigurability. Experimental results show that the proposed HGA outperforms equivalent software implementations compiled with an open-sourced C++ GA component library (GAlib) running on the same prototyping platform by 102 times at most. In the final case study, the application of the proposed HGA in tunable parameter optimization in finger-vein biometrics improved the matching rate, reducing the equal error rate (EER) value from 1.004% down to 0.101%.  相似文献   

8.
视频解码芯片的结构因硬件强大的处理能力和软件灵活的可编程功能从硬件转向软硬件分区结构。该文针对AVS标准的算法和解码实现复杂程度,根据软硬件协同设计思想提出了一种结构划分合理的AVS高清视频解码器软硬件分区结构。根据AVS算法的特点该结构将宏块层以上部分的元素解析划归到软件解码中,将宏块层解码划为硬件处理。经验证,该结构设计可实现AVS高清码流解码,并在C语言编写的硬件平台仿真程序中得以实现。  相似文献   

9.
Hardware–software partitioning (HW/SW) divides an application into software and hardware. It is one of the crucial steps in embedded system design. For a given task, hardware with different areas may provide different execution speeds due to the potential of parallel execution in hardware implementation. Thus, one task may have multiple-choice in hardware implementation according to the available hardware areas. Existing HW/SW partitioning approaches typically consider only a single implementation manner in hardware, overlooking the multiple-choice of hardware implementations. This paper presents a computing model to cater for the HW/SW partitioning problems with the multiple-choice implementation in hardware. An efficient heuristic algorithm is proposed to rapidly generate approximate solution, that is further refined by a tabu search algorithm also customized in this paper. Moreover, a dynamic programming algorithm is proposed for the exact solution of the relatively small problems. Extensive simulation results show that the approximate solutions are very close to the exact ones, and they can be refined by tabu search to the solutions with the error no more than 1.5% for all cases considered in this paper.  相似文献   

10.
软硬件通信模式的选择对软硬件通信效率产生很大影响.根据硬件函数的特点,提出一种根据软硬件通信量自适应地选择通信模式的软硬件双通信模式,并构建了一种通信模式自适应决策算法,软硬件通信模式的选择对用户透明.实验表明,根据运行时系统状态自适应地选择通信模式,软硬件通信效率得到优化,面积开销也适当减少.  相似文献   

11.
The BOAR emulation system is targeted to hardware/software (HW/SW) codevelopment of advanced embedded DSP and telecom systems. The challenge of the BOAR system is efficient customization of programmable hardware, and dedicated partitioning routine to target applications and structures, which allows quite high overall system performance. The system allows multiple configurations for communication between processors and field programmable gate arrays (FPGAs) making the BOAR system an efficient tool for real-time HW/SW coverification. The reprogrammable hardware of the emulation tool is based on four Xilinx 4000-series devices, two Texas TMS320C50 signal processors and one Motorola MC68302 microcontroller. With current devices the BOAR hardware provides approximately 40–70 kgates of logic capacity in DSP applications. The emulation capacity can be expanded by connecting several similar boards in chain. The system has also a versatile internal reprogrammable test environment for test bench development, performance evaluations and design debugging. The logic development environment is based on the Synopsys synthesis tools and an automatic design management software, which performs resource mapping and performance-driven design partitioning between FPGAs. The emulation hardware is currently connected to logic and software development environments via an RS-232C bus. The BOAR emulation system has been found a very efficient platform for real-life prototyping of different types of DSP algorithms and systems, and validating correct functionality of a VHDL macro library.  相似文献   

12.
New Model and Algorithm for Hardware/Software Partitioning   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper focuses on the algorithmic aspects for the hardware/software (HW/SW) partitioning which searches a reasonable composition of hardware and software components which not only satisfies the constraint of hardware area but also optimizes the execution time. The computational model is extended so that all possible types of communications can be taken into account for the HW/SW partitioning. Also, a new dynamic programming algorithm is proposed on the basis of the computational model, in which source data, rather than speedup in previous work, of basic scheduling blocks are directly utilized to calculate the optimal solution. The proposed algorithm runs in O(n·A) for n code fragments and the available hardware area A. Simulation results show that the proposed algorithm solves the HW/SW partitioning without increase in running time, compared with the algorithm cited in the literature.  相似文献   

13.
With the development of the design complexity in embedded systems, hardware/software (HW/SW) partitioning becomes a challenging optimization problem in HW/SW co-design. A novel HW/SW partitioning method based on position disturbed particle swarm optimization with invasive weed optimization (PDPSO-IWO) is presented in this paper. It is found by biologists that the ground squirrels produce alarm calls which warn their peers to move away when there is potential predatory threat. Here, we present PDPSO algorithm, in each iteration of which the squirrel behavior of escaping from the global worst particle can be simulated to increase population diversity and avoid local optimum. We also present new initialization and reproduction strategies to improve IWO algorithm for searching a better position, with which the global best position can be updated. Then the search accuracy and the solution quality can be enhanced. PDPSO and improved IWO are synthesized into one single PDPSO-IWO algorithm, which can keep both searching diversification and searching intensification. Furthermore, a hybrid NodeRank (HNodeRank) algorithm is proposed to initialize the population of PDPSO-IWO, and the solution quality can be enhanced further. Since the HW/SW communication cost computing is the most time-consuming process for HW/SW partitioning algorithm, we adopt the GPU parallel technique to accelerate the computing. In this way, the runtime of PDPSO-IWO for large-scale HW/SW partitioning problem can be reduced efficiently. Finally, multiple experiments on benchmarks from state-of-the-art publications and large-scale HW/SW partitioning demonstrate that the proposed algorithm can achieve higher performance than other algorithms.  相似文献   

14.
15.
面向SoC的软硬件协同验证平台设计   总被引:1,自引:1,他引:0  
鲍华  洪一  郭二辉 《计算机工程》2009,35(8):271-273
针对SoC设计验证的实际需求,介绍一种面向SoC设计的软硬件协同验证平台。平台中软硬件模型分别在不同环境下运行,通过网络实现信息交互。硬件用硬件描述语言实现对系统事务级、RTL级的建模,软件用高级编程语言来编写,使用指令集仿真器完成对硬件的仿真。仿真过程使用不同的进程并行进行,应用进程间通信方式实现仿真器之间的信息交互。  相似文献   

16.
冯鑫  郭炜 《计算机仿真》2007,24(10):257-260
随着SoC(System on Chip)系统设计复杂度的不断提高,设计前期在系统级别进行软硬件规划对SoC 性能的影响日趋增加,在复杂视频解码SoC 设计中迫切需要高效的性能分析和验证平台从架构层次上优化性能.将基于电子系统级设计(Electronic System Level , ESL)仿真方法在MPEG-4 视频解码SoC 软硬件协同设计中的应用,利用ARM SoC-Designer ESL 平台分析软件算法的瓶颈,实现软硬划分.通过SystemC 对硬件单元周期精确建模,最终实现了MEPG-4 解码软硬件协同仿真验证.实践证明利用ESL 进行系统设计不仅可以有效提高仿真速度而且设计的视频解码硬件能有效改善系统的性能.  相似文献   

17.
18.
K.  L.  B.  I. 《Computers & Electrical Engineering》2007,33(5-6):324-332
It is a challenge to implement large word length public-key algorithms on embedded systems. Examples are smartcards, RF-ID tags and mobile terminals. This paper presents a HW/SW co-design solution for RSA and Elliptic Curve Cryptography (ECC) over GF(p) on a 12 MHz 8-bit 8051 micro-controller. The hardware coprocessor has a Modular Arithmetic Logic Unit (MALU) of which the digit size (d) is variable. It can be adapted to the speed and bandwidth of the micro-controller to which it is connected. The HW/SW co-design space exploration is based on the GEZEL system-level design environment. It allows the designer to find the best performance-area combination for the digit size. As a case study of an FPGA prototyping, 160-bit ECC over GF(p) (ECC-160p) was implemented on Xilinx Virtex-II PRO (XC2VP30). The results show that one point multiplication takes only 130 ms including all communications between the 8051 and the coprocessor. The performance is 40 times faster than the most optimized SW implementation on a small CPU in literature. This is achieved by the HW/SW co-design exploration in order to find the optimized digit size of the MALU. On the other hand, the design of ECC-160p maintains a high level of flexibility by using coprocessor instructions. Our proposed architecture proves that HW/SW co-design provides a high performance close to ASIC solutions with a flexible feature of SW even on a small CPU.  相似文献   

19.
K均值聚类和模拟退火融合的软硬件划分   总被引:1,自引:0,他引:1  
文章提出了一种K均值聚类和模拟退火融合的软硬件划分算法。算法首先将有相似属性的任务节点通过K均值聚类算法组成一个大的任务节点,而后使用模拟退火算法划分由大的任务节点组成的系统。通过对比经典的模拟退火软硬件划分技术以及实验结果的验证表明,使用K均值聚类和模拟退火融合的软硬件划分算法使有着较多任务节点的复杂系统的软硬件划分快速收敛到合适的值。  相似文献   

20.
This paper describes an analysis of hardware-related software (HW/SW) errors on an MVS/SP operating system at Stanford University. The analysis procedure demonstrates a methodology for evaluating the interaction between hardware and software as it relates to system reliability. The paper examines the operating system's handling of HW/SW errors and also the effectiveness of recovery management. Nearly 35 percent of all observed software failures were found to be hareware-related. The analysis shows that the operating system is seldom able to diagnose that a software error may be hardware-related. The impact of HW/SW errors on the system is evaluated by measuring the effectiveness of system recovery in containing the propagation of HW/SW errors. The system failure probability for HW/SW errors is close to three times that for software errors in general. The observed HW/SW errors are seen to have a specific pattern, suggesting the possibility of the use of such error patterns for intelligent error prediction and recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号