首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在能量俘获电路设计中,采用混合能量俘获可提高电路输出功率和可靠性,但存在需要外加电源、控制电路复杂等问题。针对压电和电磁能俘获,本文在基于同步翻转电荷提取的结构基础上,提出了自供电压电电磁混合能量俘获电路(Dual Source-Synchronous Inversion and Charge Extraction, DS-SICE)。电路工作原理如下:在振动的正半周期,压电电压达到峰值时,利用电磁能作为辅助对压电上的电压进行翻转;在振动的负半周期,采用同步电荷提取结构(Synchronous Electric Charge Extraction, SECE),提取压电片和电磁发电机的能量。所提出的DS-SICE电路在增加输出功率的同时,减少了负载依赖性,实现了两者能量源的协同作用。仿真和实验测试结果表明,所提出的电路可以实现压电振动能和电磁能的同步采集。较之于标准能量俘获电路最大输出功率,电路的效率提高2.7倍,并且降低了对负载的依赖性。  相似文献   

2.
针对多压电能量俘获问题,提出了一种可拓展的自供电同步翻转电荷提取(Extensible Self-Powered Synchronous Inver-sion and Charge Extraction Circuit,ESP-SICE)接口电路.所提出的接口具有自供电、无整流桥设计的特点.电路通过同步电压翻转提高开路电压,通过同步电荷提取可在任意相位差下从多个压电换能器俘获能量而不仅限于时分复用的方式.仿真和实验结果表明,ESP-SICE电路单个压电能量的提取效率可达全桥整流电路最大功率的4.2倍.  相似文献   

3.
多源环境能量俘获正成为环境能量俘获的研究热点,室内存在各种光能和温差热能,通过光电池和温差热电片换能后可获得直流电。但温差热电能在通常情况下因开路电压低而难以俘获,单一的室内光能因能量密度较低也难于俘获,本文提出了基于单电感的室内光能和温差热电能的双能源协同俘获电路(Dual-source energy Cooperative Harvesting Circuit, DCHC)设计,所提出的DCHC路,可以在一个电感充放电周期内对光能和热能进行同时俘获,提高能量俘获总量。此外, 热能的引入对光能的俘获起到了协同的作用,可以有效提升光能的俘获效率,结果表明,光能俘获峰值效率最高可达86%。  相似文献   

4.
同步翻转和电荷提取SICE (Synchronous Inversion and Charge Extraction)电路是低耦合压电系统中最为有效的接口电路之一。本文提出了一种自供电的同步翻转与电荷提取SP-SICE (Self-Powered Synchronous Inversion and Charge Extraction) 电路。所提出的接口电路使用一个正/负峰值检测模块,具有共享电感、自供电和无整流桥等特点。当压电元件电压达到正峰值时,翻转电压;当压电元件电压达到负峰值时,提取能量。LTspice仿真和实验结果都表明SP-SICE电路的有效性,并且其输出功率可以达到SECE电路最大输出功率的1.9倍。  相似文献   

5.
提出了一种高效的自供电串联同步开关电感(ESPS-SSHI)电路,ESPS-SSHI电路通过简化无源的正/负峰值检测电路来检测压电元件开路电压的正、负极值,不但降低了电路的能耗,而且减少了压电元件达到峰值时与开关动作时刻的相位差,从而提高了能量提取的效率。LTspice仿真和实验验证表明:设计的电路最大输出功率可提高至标准能量俘获(SEH)电路的4. 5倍。  相似文献   

6.
物联网时代传感器节点往往分布广泛,且有时传感器节点放置位置不易触及,电池能量一旦用尽不易更换,该传感器节点就无法正常工作。为此,该文设计了一种基于压电振子振动能量供电的微功耗温度测量系统,该系统利用压电振动能量收集装置将环境中存在的低频振动能量转换为电能并收集存储,并为设计的微功耗温度测量系统供电从而实现温度信号采集和发送。提出了一种基于干簧管的能量采集电路,其采集效率是标准能量采集电路的32倍,最后通过试验验证了该系统的可行性与准确性。  相似文献   

7.
压电换能器通常输出微弱,使用辅助电源的自供电控制电路功耗大,其电源管理电路启动阈值高,启动速度慢,转换效率低.对同步电荷提取(SECE)电路进行建模和理论推导,提出了一种间歇性自供电控制电路原理.根据SECE电路输出的最大功率点,间歇性地给控制电路非常短时间供电,并解决了间歇供电易造成逻辑混乱的问题,大幅度减小自供电电路的功耗,提高电路的效率,电路在极低输入功率下也能快速启动.实验结果表明,在压电换能器输出21 Hz、3.6 V电压时,控制电路功耗低至0.19 μW,是常规控制电路总功耗的1/134;管理电路的启动功率阈值仅为0.39 μW,低于通常电路的1/14.该控制电路的工作原理也适用于其他容性内阻换能器的微弱能量采集和高效管理电路.  相似文献   

8.
利用压电元件的压电效应将外界振动产生的机械能转化为电能是当前一种有效的俘能方法。将压电元件表面累积的电荷进行有效提取是这种俘能方法的关键。因此,高效的电荷提取电路的设计显得特别重要。本文提出了一种自供电同步电荷提取电路SP-OSCE(Self-Powered Optimized Synchronous Charge Extraction Circuit),使用两个无源的极值检测电路检测压电元件输出信号的正负极值并在极值点进行能量提取。所提出的SP-OSCE电路采用整流电路、极值检测电路元件复用的方法,从而避免了传统的整流桥结构;电路不但提取了压电元件受夹电容中的电荷,而且将检测电容中所积累的电荷提取到电感上,提高了能量的转换效率。通过Multisim建模仿真验证了所设计电路的有效性,进而进行了物理验证,实验表明与仿真结果相吻合。  相似文献   

9.
当前,大多数压电能量采集电路是针对于单压电元件(PZT)输入的.实际应用中,为获得更多能量,压电俘能器(PEH)往往配备有多压电片输出,如何对多输入PEH的电荷进行高效提取已经成为研究热点.本文提出了一种无相位滞后的高效多输入同步电荷提取电路MI-SECE(Multi-Input Synchronous Electric Charge Extraction circuit),主要由整流桥、峰值检测电路、电压过零检测电路、传输控制电路和Buck-Boost电路组成.通过有源峰值检测电路和电压过零检测电路,MI-SECE可准确捕捉压电元件电压达到峰值的时间,并减小其与开关动作时间的相位差,从而提高能量提取效率.实验验证表明:MI-SECE电路能够显著提高能量采集效率,能量采集效率高达90.01%,并且可以同时从多个PZT中提取能量.  相似文献   

10.
为了有效地采集减速带振动的能量,提出了一种采用Cymbal换能器的机电转换装置。汽车通过的压力经减速带传递到换能器使其产生轴向和径向位移,通过压电效应将机械能转化成电能。根据振动力学建立车辆减速带和压电换能器的耦合振动模型,利用压电学原理研究了机电转换理论,运用Newmark算法对发电系统输出电能进行仿真。仿真结果表明,所建模型能将振动机械能转换为电能,当车辆以10 km/h通过时最大会产生204.78V的电压和0.768mW的功率。对于开拓减速带发电新思路具有借鉴意义。  相似文献   

11.
采用TSMC 0.18μm CMOS工艺,设计了一种硅波导导纳检测电路,通过检测光子器件硅波导导纳变化,实现光功率监测。检测电路采用基于目标信号二次谐波(2ω_0)频率的锁定放大结构。目标信号由开关式相敏检测器和跨阻放大器进行频率合成与放大,在2ω_0频率处由二阶OTA-C带通滤波提取,最后硅波导导纳的改变量由提取的电压信号变化量表示。目标信号在2ω_0频率处被提取可以减小1/f噪声对其干扰,从而提高硅波导导纳的分辨率。仿真结果表明,在80 MHz工作带宽内测得导纳分辨率为0.8 pS。  相似文献   

12.
步态识别是非接触式生物识别领域中一个比较前沿的课题,它主要是利用行走过程中个体步态之间的差异来识别人的身份。近年来,随着可穿戴传感器在人体信息采集中的广泛应用,利用惯性传感器采集步行过程中的线性加速度以及角速度进而实现步态特征提取是该领域中一个研究热点。为了提取更加有效的步态识别特征,利用基于注意力机制的卷积神经网络来进行步态特征的深度学习,其主要流程是先对原始数据进行预处理,接着利用卷积神经网络对处理后的数据提取步态特征,然后利用注意力机制对步态特征进行加强,最后再分类。实验结果证明了本文方法的优越性。  相似文献   

13.
无线传感器网络数据传输过程中节点负载不均衡,容易导致某些节点过早死亡从而出现网络路由空洞,这会对网络拓扑结构造成毁灭性的破坏,甚至导致网络功能失效。针对该问题提出一种能耗优先的WSN路由空洞修复方法RVREP(A WSN Routing Void Repair method based on Energy Priority),首先研究了两种空洞查找方法,然后提出网络路由空洞完全修复的判断方法,最后利用匈牙利算法派遣可移动节点完成网络空洞修复。实验结果表明该方法遵循能耗优先准则在修复网络路由空洞方面具有优秀的性能,且修复后能够使网络的平均生存时间延长2.3倍。  相似文献   

14.
提出了一种新颖的基于液态金属的可重构电容器,该器件可应用于可调谐频率选择面。这种可重构电容器由一对金属贴片和微流体管道组成。微流体管道包含聚二甲基硅氧烷(PDMS)材料制成的主管道(用于控制液态金属)和与其共面的子管道(用于储存盐酸溶液)。由于PDMS具有良好的渗透性,在子管道中的盐酸蒸汽可以通过管道壁渗透进入主管道,并和液态金属上的表面氧化层反应,使之呈现真正的流体特性。液态金属液滴可以在管道道中自由的移动。最后,基于这种液态金属的微流体平台,开发了一种可应用于可调谐频率选择面的可重构电容器件。其调谐性主要取决于主管道中液态金属液滴的位置和形状。实验结果表明,这种基于液态金属的可重构电容器可以广泛的应用于可调谐电子器件之中。  相似文献   

15.
开发一套测量细胞间、细胞与基质分子间粘附力的仪器。根据磁场力学的原理,由DA(数模)转换模块控制电磁铁电流的大小从而改变磁场,结合麦克斯韦简化公式,磁场对处理过的膜内含有纳米磁粉的细胞具有吸引力的作用,当细胞的粘附力和磁场的作用力达到平衡的时候,通过测量磁场的吸引力就能间接测出细胞间的粘附力大小。结合电子电路软硬件的设计完成了电磁力吸引测量细胞粘附力仪器的开发,并通过Maxwell软件对仪器核心部件——吸盘式电磁铁进行磁场的仿真分析,得到磁场仿真数据,与仪器测试数据进行对照分析,发现这两组数据在所通电流大小和磁力大小的关系趋势上非常吻合。开发了一种细胞粘附力检测仪器,为测量粘附力提供了一种新的方法,通过改变电流大小从而改变磁场大小,得到相应的细胞粘附力大小,具有无接触式测量、不会对细胞造成损伤等优点,该技术具有一定的实用性。  相似文献   

16.
针对自主跟随机器人在自由空间中对移动目标进行跟随时,由于信号源发射角度小,自主跟随机器人很容易进入信号盲区,并且难以对移动目标进行精确定位、移动姿态确定等问题,提出了一种基于多传感器信息融合的自主跟随定位及避障方法,该方法通过在移动目标上增加多信号源,使自主跟随机器人与移动目标之间建立冗余信道,并通过多传感器信息融合方法,计算出移动目标中心位置及实时移动姿态;设置测距模块,使自主跟随机器人能避开障碍,保持跟随。根据此方法建立了多信号源定位模型和算法,并对该算法进行了实验验证。实验结果表明,该方法能够准确的对移动目标进行定位和移动姿态确定,并且信号盲区小,能有效的避开障碍,保持对移动目标的跟随,具有一定的工程应用价值。  相似文献   

17.
基于Bishop和Kinra的理论框架,利用积分变换法,建立了周边固定条件下,双层矩形微板谐振器中热弹性阻尼解析模型。通过与先前解析模型以及有限元数值模型进行比较,验证了本文模型的有效性。结果分析表明:当基层材料与镀层材料的Zener模量相差较大时,热弹性阻尼频谱曲线会出现两个波峰;双层板的厚度对热弹性阻尼有很大的影响;当微板的厚度不变时,所得热弹性阻尼频谱曲线不随其他结构几何参数变化。  相似文献   

18.
针对目前Herschel-Bulkley模型参数值通常随试验条件而变化,存在无法构建确定的数学模型的局限性,提出一种Herschel-Bulkley模型全局参数辨识的方法。针对所设计的多级圆筒式磁流变阻尼器,基于Herschel-Bulkley模型建立了阻尼器的转矩力学模型并搭建扭矩测试系统以确定模型参数,通过1stOpt优化分析软件的Levenberg-Marquardt算法和通用全局优化算法对转矩力学模型进行参数辨识,确定模型中液体流动行为参数 k和n 分别为49.88及0.576。参数辨识后的Herschel-Bulkley扭矩模型在不同磁场条件下基本满足扭矩预测效果,可为后续对于器件的有限元分析计算提供理论依据。  相似文献   

19.
时差式气体超声波流量计在测量时现会出现零漂过大的问题,导致整体系统计量准确度不高。针对这种情况,提出了一种通过匹配流道中同一探头在发射状态下的输入阻抗和接收状态下的输出阻抗来抑制零漂的方法。利用贴片电容抬高信号激励端的阻抗,使之脱离与地虚短的状态,避免同一探头在发、收状态切换时的电路结构变化。保持探头谐振频率不变,使超声波探头发收电路固有延时在顺、逆流测量时相等。利用互相关法使顺逆流信号中固有延时相互抵消,实验结果表明,阻抗匹配有效抑制了零漂,20℃时零点误差被抑制在0.000 48 m3/h内,符合1.5级气体流量计国家标准。  相似文献   

20.
针对常规机器人导航系统采用单一类型地形识别传感器,观察维度单一等问题,对煤矿井下探测搜救机器人地形感知系统进行研究,使用远近感知系统数据融合,提高机器人避障能力。由激光扫描仪采集的二维点云数据建立远距离地形信息,由Kinect相机采集的地形深度信息建立近距离地形信息。基于PCL模型,应用像素遍方法,实现观测信息的采集与云图像的构建。使用2.5维栅格地图构建方法得到近距离环境地形信息。使用Dijkstra算法进行了路径规划研究,建立了融合路径长度和地面危险度等级的目标函数。通过仿真研究验证了本文提出的最优路径减小机器人行走过程的俯仰角、侧倾角的波动幅度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号