首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the problem of state feedback stabilization for a class of high‐order nonlinear systems with an asymmetric output constraint. A novel asymmetric barrier Lyapunov function (BLF) is first proposed by deliberating the characteristics of the system nonlinearities. Then, the presented BLF, together with a skillful manipulation of sign functions, is utilized to delicately revamp the technique of adding a power integrator, thereby developing a systematic approach that guides us in constructing a continuous state feedback stabilizer and preventing the violation of a pre‐specified asymmetric output constraint during operation. The novelty of this paper is attributed to the development of a unified method that is able to simultaneously tackle the problem of stabilization for high‐order nonlinear systems with and without output constraints in a constructive fashion, without changing the controller structure. An illustrative example is presented to demonstrate the superiority of the proposed approach.  相似文献   

2.
This paper investigates the problem of robust controller design for output‐constrained and state‐constrained uncertain switched nonlinear systems. By using the idea of p‐times differentiable unbounded functions and the backstepping technique, a constructive method is proposed to design effective controllers such that the output of a class of uncertain switched nonlinear systems in lower triangular form can asymptotically track a constant reference signal without violation of the output tracking error constraint. Furthermore, the explored method is applied to the state‐constrained robust stabilization problem for a class of general uncertain switched nonlinear systems. Finally, a simulation example is provided to demonstrate the effectiveness of the developed results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Many stability and stabilization problems of nonlinear time‐varying systems lead to asymptotic behavior of (–K + L)‐type systems, which consist of a K‐function and an L‐function. The stability of these systems is of fundamental importance for a series of stabilization problems of time‐varying nonlinear control systems. Even though the asymptotical stability of such systems has been used widely and (in most cases) implicitly, we do not find a rigorous proof, in the literature, and the existing proof for a particular case is questionable. Under quite general conditions, we prove that the solution of these systems tends to 0 as t →. Some generalizations are also obtained. As an immediate consequence, a general theorem is obtained for the stabilization of time‐varying systems. Using the new framework, we examine several stability and stabilization problems. First of all, for cascade systems, two sets of sufficient conditions are obtained for uniformly asymptotical stability and globally asymptotical stability, respectively. Then we consider the stability of ISS and IISS systems. A new concept, namely, strong IISS, is proposed. Several stability properties for autonomous systems are extended to time‐varying systems. Finally, we consider stabilization via detection. A rigorous proof is given for a smooth state feedback time‐varying system with weak detectability to be stabilizable by means of an observer.  相似文献   

4.
Finite-time stabilization (FTS) problem of output-constrained planar switched systems via output feedback is investigated in this paper. State feedback control laws are constructed in a systematic way by combining the revamped adding a power integrator technique (APIT) with the elaborately designed logarithm-type barrier Lyapunov function (BLF). By merging the constructed variable-gain switched observers, finite-time output-feedback stabilization, then, is achieved with the output constraint meets too. At the end, simulations are presented to show the effectiveness of the proposed method.  相似文献   

5.
This paper aims to propose an additive‐state‐decomposition‐based tracking control framework, based on which the output feedback tracking problem is solved for a class of nonminimum phase systems with measurable nonlinearities and unknown disturbances. This framework is to ‘additively’ decompose the output feedback tracking problem into two more tractable problems, namely an output feedback tracking problem for a linear time invariant system and a state feedback stabilization problem for a nonlinear system. Then, one can design a controller for each problem respectively using existing methods, and these two designed controllers are combined together to achieve the original control goal. The main contribution of the paper lies on the introduction of an additive state decomposition scheme and its implementation to mitigate the design difficulty of the output feedback tracking control problem for nonminimum phase nonlinear systems. To demonstrate the effectiveness, an illustrative example is given. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper considers the problem of state feedback finite‐time stabilization for a class of high‐order nonlinear systems with an output constraint. By proposing a novel tan‐type barrier Lyapunov function combined with manipulating sign functions, the technique of adding a power integrator is skillfully revamped to develop a systematic approach that guides us to construct a state feedback finite‐time stabilizer for high‐order nonlinear systems while preventing the violation of a prespecified output constraint during operation. The proposed approach is a unified tool in the sense that it can provide a finite‐time stabilizer design even when the constraint is infinite, or equivalently, there is no need for a constraint. A simple example is presented to demonstrate the effectiveness of the proposed strategy.  相似文献   

7.
This paper presents a novel framework to asymptotically adaptively stabilize a class of switched nonlinear systems with constant linearly parameterized uncertainty. By exploiting the generalized multiple Lyapunov functions method and the recently developed immersion and invariance (I&I) technique, which does not invoke certainty equivalence, we design the error estimator, continuous state feedback controllers for subsystems, and a switching law to ensure boundedness of all closed‐loop signals and global asymptotical regulation of the states, where the solvability of the I&I adaptive stabilization problem for individual subsystems is not required. Then, along with the backstepping method, the proposed design technique is further applied to a class of switched nonlinear systems in strict‐feedback form with an unknown constant parameter so that the I&I adaptive stabilization controllers for the system is developed. Finally, simulation results are also provided to demonstrate the effectiveness of the proposed design method.  相似文献   

8.
In this paper, the problems of stochastic disturbance attenuation and asymptotic stabilization via output feedback are investigated for a class of stochastic nonlinear systems with linearly bounded unmeasurable states. For the first problem, under the condition that the stochastic inverse dynamics are generalized stochastic input‐to‐state stable, a linear output‐feedback controller is explicitly constructed to make the closed‐loop system noise‐to‐state stable. For the second problem, under the conditions that the stochastic inverse dynamics are stochastic input‐to‐state stable and the intensity of noise is known to be a unit matrix, a linear output‐feedback controller is explicitly constructed to make the closed‐loop system globally asymptotically stable in probability. Using a feedback domination design method, we construct these two controllers in a unified way. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The asymptotic stabilization problem is studied for a cascade connection of passive switched nonlinear systems and a passive switched nonlinear system in this paper. When each subsystem is asymptotically zero state detectable and passive on active time intervals, asymptotic stabilization is achieved via co‐design of switching laws and controllers without damping injection. First, an output‐feedback controller is designed to asymptotically stabilize a cascade connection of two passive switched systems if outputs are measurable. Second, when the output of the first switched system is noisy or unmeasurable, a sampled integral stabilization (SIS) technique is employed to investigate asymptotical stabilization of a cascade connection by measuring only the storage function of the second switched system. Finally, as a special case of a cascade connection, the SIS technique is used to stabilize a passive switched system without damping injection. Under this circumstance, the controller is designed by sampling the integral of the passive output. The two‐link robot manipulator is provided to illustrate the effectiveness of the SIS technique.  相似文献   

10.
This paper is concerned with the stabilization problem for a class of state‐constrained switched nonlinear system in p‐normal form in a domain. A key point in the backstepping design procedure is to find a common stabilizing function at each step. A barrier Lyapunov function, which grows to infinity when its arguments approach some limits, is introduced to ensure that the state constraint is not violated at any time. Bounded state feedback controllers of individual subsystems and a common Lyapunov function are explicitly constructed to asymptotically stabilize the closed‐loop system under arbitrary switchings. An example is given to show the effectiveness of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, an adaptive output‐feedback control problem is investigated for nonlinear strict‐feedback stochastic systems with input saturation and output constraint. A barrier Lyapunov function is used to solve the problem of output constraint. Then, fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy state observer is designed to estimate the unmeasured states. To overcome the difficulties in designing the control signal in the saturation, we introduce an auxiliary signal in the n + 1th step in the deduction. By combining Nussbaum technique and the adaptive backstepping technique, an adaptive output‐feedback control method is developed. The proposed control method not only overcomes the problem of the compensation for the nonlinear term from the input saturation but also overcomes the problem of unavailable state measurements. It is proved that all the signals of the closed‐loop system are semiglobally uniformly ultimately bounded. Finally, the effectiveness of the proposed method is verified by the simulation results.  相似文献   

12.
一类离散时间切换系统鲁棒控制器设计   总被引:7,自引:0,他引:7  
考虑一类非线性离散时间切换系统的鲁棒二次镇定和渐近镇定问题.利用公共李亚普诺夫函数方法和多李亚普诺夫函数方法,分别设计了切换系统鲁棒状态反馈控制器和输出反馈控制器,保证了切换系统的二次稳定性和渐近稳定性.仿真结果验证了所提出算法的有效性.  相似文献   

13.
This paper investigates the global asymptotic stabilization problem for a class of nonlinear systems with time‐varying powers. First, adding a power integrator technique is revamped to design a smooth state feedback controller, which is implementable with only upper and lower bounds of the time‐varying powers. When the system state is not fully available and the time‐varying power is exactly known, a smooth output feedback controller constituted by a state feedback and a nonlinear state observer is constructed to globally stabilize the system. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
This paper investigates the problem of global output‐feedback stabilization by sampled‐data control for nonlinear systems with unknown measurement sensitivity. By employing the technique of output‐feedback domination, a sampled‐data output‐feedback control law together with a sampled‐data state observer is explicitly constructed. By an exquisite selection of both the domination gain and sampling period, the resultant control law is a globally asymptotic stabilizer even in the presence of unknown measurement sensitivity. The novelty of this paper is the development of a distinct approach which can tackle the problem of output‐feedback stabilization for the nonlinear systems with unknown measurement sensitivity.  相似文献   

15.
This paper studies the problem of H output tracking control for a class of discrete‐time switched systems. Neither the measurability of the system state nor the solvability of the output tracking control problem for each individual subsystem is required. We design controllers for subsystems and a switching law to solve the H output tracking problem for the switched system. The designed controllers use only the measured output feedback, and the switching law is based on the measured output tracking error. In addition, the quadratic function corresponding to each subsystem is not required to be positive definite. A numerical example is provided to demonstrate the feasibility and validity of the proposed design method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The problem of global stabilization by output feedback is investigated in this paper for a class of nonminimum‐phase nonlinear systems. The system under consideration has a cascade configuration that consists of a driven system known as the inverse dynamics and a driving system. It is proved that although the zero dynamics may be unstable, there is an output feedback controller, globally stabilizing the nonminimum‐phase system if both driven and driving systems have a lower‐triangular form and satisfy a Lipschitz‐like condition, and the inverse dynamics satisfy a stronger version of input‐to‐state stabilizability condition. A design procedure is provided for the construction of an n‐dimensional dynamic output feedback compensator. Examples and simulations are also given to validate the effectiveness of the proposed output feedback controller. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, adaptive output feedback control is presented to solve the stabilization problem of nonholonomic systems in chained form with strong nonlinear drifts and uncertain parameters using output signals only. The objective is to design adaptive nonlinear output feedback laws which can steer the closed‐loop systems to globally converge to the origin, while the estimated parameters remain bounded. The proposed systematic strategy combines input‐state scaling with backstepping technique. Motivated from a special case, adaptive output feedback controllers are proposed for a class of uncertain chained systems. The simulation results demonstrate the effectiveness of the proposed controllers. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

18.
This paper investigates the global output‐feedback stabilization for a class of stochastic nonlinear systems with function control coefficients. Notably, the systems in question possess control coefficients that are functions of output, rather than constants; hence, they are different from the existing literature on stochastic stabilization. To solve the control problem, an appropriate reduced‐order observer is introduced to reconstruct the unmeasured system states before a smooth output‐feedback controller is designed using the backstepping method, which guarantees that the closed‐loop system is globally asymptotically stable in probability. This paper combines the related results in the deterministic and stochastic setting and gives the first treatment on the global output‐feedback stabilization for the stochastic nonlinear systems with function control coefficients. A simulation example is given also to illustrate the effectiveness of the proposed approach.  相似文献   

19.
20.
This article investigates the finite‐time output feedback stabilization problem for a class of nonlinear time‐varying delay systems in the p‐normal form. First, a reduced‐order state observer is designed to estimate the unmeasurable state. Then, an output feedback controller is constructed, with the help of the finite‐time Lyapunov stability theorem, it is proved that the state of the resulting closed‐loop system converges to the origin in finite time. Two simulation examples are given to verify the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号