首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
In this paper, a robust controller for a six degrees of freedom (6 DOF) octorotor helicopter control is proposed in presence of actuator and sensor faults. Neural networks (NN), interval type-2 fuzzy logic control (IT2FLC) approach and sliding mode control (SMC) technique are used to design a controller, named fault tolerant neural network interval type-2 fuzzy sliding mode controller (FTNNIT2FSMC), for each subsystem of the octorotor helicopter. The proposed control scheme allows avoiding difficult modeling, attenuating the chattering effect of the SMC, reducing the number of rules for the fuzzy controller, and guaranteeing the stability and the robustness of the system. The simulation results show that the FTNNIT2FSMC can greatly alleviate the chattering effect, tracking well in presence of actuator and sensor faults.  相似文献   

2.
In this paper, a fuzzy logic controller (FLC) is designed based on the similarity between the FLC and the sliding mode control (SMC). The proposed scheme provides the sliding mode-like FLC with fast self-tuning the dead-zone parameters (boundary layer thickness) under parameter variations of the controlled system. To show the validity and the effectiveness of the proposed control method, simulations are performed for the position control of a rotary inverted pendulum  相似文献   

3.
This paper presents a new method combining sliding mode control (SMC) and fuzzy logic control (FLC) to enhance the robustness and performance for a class of non-linear control systems. This fuzzy sliding mode control (FSMC) is developed for application in the area for controlling the speed and flux loops of asynchronous motors. The proposed control law can solve those problems associated with the conventional control by sliding mode control, such as high current, flux and torque chattering, variable switching frequency and variation of parameters, in which a robust fuzzy logic controller replaces the discontinuous part of the classical sliding mode control law. Simulation results of the proposed FSMC technique on the speed and flux rotor controllers present good dynamic and steady-state performances compared to the classical SMC in terms of reduction of the torque chattering, quick dynamic torque response and robustness to disturbance and variation of parameters.  相似文献   

4.
In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.  相似文献   

5.
In this study, a genetic‐fuzzy control system is used to control a riderless bicycle where control parameters can adapt to the speed change of the bicycle. The equations of motion are developed for a bicycle with constraints of rolling‐without‐slipping contact condition between the wheels and ground. This controller consists of two loops: the inner is a roll‐angle‐tracking controller which generates steering torque to control the roll angle while guaranteeing the stability, and the outer is a path‐tracking controller which generates the reference roll angle for the inner loop. The inner loop is a sliding‐mode controller (SMC) designed on the basis of a linear model obtained from a system identification process. By defining a stable sliding surface of error dynamics and an appropriate Lyapunov function, the bicycle can reach the roll‐angle reference in a finite time and follow that reference without chattering. The outer loop determines the proper reference roll‐angle by using a fuzzy‐logic controller (FLC) in which previewing and tracking errors are taken into consideration. The robustness of the proposed controller against speed change and external disturbances is verified by simulations.  相似文献   

6.
In this paper, an interval type-2 fuzzy sliding-mode controller (IT2FSMC) is proposed for linear and nonlinear systems. The proposed IT2FSMC is a combination of the interval type-2 fuzzy logic control (IT2FLC) and the sliding-mode control (SMC) which inherits the benefits of these two methods. The objective of the controller is to allow the system to move to the sliding surface and remain in on it so as to ensure the asymptotic stability of the closed-loop system. The Lyapunov stability method is adopted to verify the stability of the interval type-2 fuzzy sliding-mode controller system. The design procedure of the IT2FSMC is explored in detail. A typical second order linear interval system with 50% parameter variations, an inverted pendulum with variation of pole characteristics, and a Duffing forced oscillation with uncertainty and disturbance are adopted to illustrate the validity of the proposed method. The simulation results show that the IT2FSMC achieves the best tracking performance in comparison with the type-1 Fuzzy logic controller (T1FLC), the IT2FLC, and the type-1 fuzzy sliding-mode controller (T1FSMC).  相似文献   

7.
This paper proposes a trajectory tracking scheme which belongs to the sliding mode control (SMC) for the 4-degree-of-freedom (DOF) parallel robots. Two fuzzy logic systems (FLS) are first put forward to replace the constant switching control gain and the width of the boundary layer. The fuzzy adaptive supervisory controller (FASC) is combined with the fuzzy sliding mode control (FSMC) to further reduce the chattering. The design is simple and less fuzzy rules are required. The simulation results demonstrate that the chattering of the SMC is reduced greatly and the parallel robot realizes the trajectory tracking with very good robustness to the parameter uncertainties and external disturbances.  相似文献   

8.
不确定多输入非线性系统自适应模糊滑模控制器设计   总被引:2,自引:0,他引:2  
王声远  霍伟 《控制与决策》2001,16(5):535-539
针对一类不确定多输入非线性系统提出一种新的自适应模糊滑模控制器,该控制器在存在模型逻辑系统逼近误差的情况下使闭环系统跟踪误差小于预先给定常数,消除滑模控制中的抖振,缓解因系统维数增高所致的模糊规则爆炸现象,最后用仿算例验证了所提出方法的有效性。  相似文献   

9.
Ankle rehabilitation robots have recently attracted great attention since they provide various advantages in terms of rehabilitation process from the viewpoints of patients and therapists. This paper presents development and evaluation of a fuzzy logic based adaptive admittance control scheme for a developed 2-DOF redundantly actuated parallel ankle rehabilitation robot. The proposed adaptive admittance control scheme provides the robot to adapt resistance/assistance level according to patients' disability level. In addition, a fuzzy logic controller (FLC) is developed to improve the trajectory tracking ability of the rehabilitation robot subject to external disturbances which possibly occur due to human-robot interaction. The boundary scales of membership functions of the FLC are tuned using cuckoo search algorithm (CSA). A classical proportional-integral-derivative (PID) controller is also tuned using the CSA to examine the performance of the FLC. The effectiveness of the adaptive admittance control scheme is observed in the experimental results. Furthermore, the experimental results demonstrate that the optimized FLC significantly improves the tracking performance of the ankle rehabilitation robot and decreases the steady-state tracking errors about 50% compared to the optimized PID controller. The performances of the developed controllers are evaluated using common error based performance indices indicating that the FLC has roughly 50% better performance than the PID controller.  相似文献   

10.
一种新的自适应模糊滑模控制器设计方法   总被引:4,自引:0,他引:4  
对一类非线性系统提出一种新的自适应模糊滑模控制器设计方法。将自适应模糊控制与滑模控制有效地结合在一起,先用滑模控制使跟踪误差进入边界层内,然后启动自适应模糊控制器。该控制器可消除滑模控制器中出现的抖振,并可在存在模糊逻辑系统逼近误差情况下使系统跟踪误差小于预先给定的任意常数。仿真算例验证了所提出方法的有效性。  相似文献   

11.
This paper presents a robust adaptive control strategy for robot manipulators, based on the coupling of the fuzzy logic control with the so‐called sliding mode control (SMC) approach. The motivation for using SMC in robotics mainly relies on its appreciable features. However, the drawbacks of the conventional SMC, such as chattering effect and required a priori knowledge of the bounds of uncertainties can be destructive. In this paper, these problems are suitably circumvented by adopting a reduced rule base single input fuzzy self tuning decoupled fuzzy proportional integral sliding mode control approach. In this new approach a decoupled fuzzy proportional integral control is used and a reduced rule base single input fuzzy self‐tuning controller as a supervisory fuzzy system is added to adaptively tune the output control gain of the decoupled fuzzy proportional integral control. Moreover, it is proved that the fuzzy control surface of the single‐input fuzzy rule base is very close to the input/output relation of a straight line. Therefore, a varying output gain decoupled fuzzy proportional integral sliding mode control approach using an approximate line equation is then proposed. The stability of the system is guaranteed in the sense of the Lyapunov theorem. Simulations using the dynamic model of a 3DOF planar manipulator with uncertainties show the effectiveness of the approach in high speed trajectory tracking problems. The simulation results that are compared with the results of conventional SMC indicate that the control performance of the robot system is satisfactory and the proposed approach can achieve favorable tracking performance, and it is robust with regard to uncertainties and disturbances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
研究提高关节机器人轨迹跟踪控制的性能,由于关节机器人运动中产生振动,影响系统的稳定性能。为解决上述问题,提出了一种反馈线性化的自适应模糊积分滑模控制方法。在上述方法的基础上,对机器人非线性动力学模型反馈线性化。为了进一步提高滑模控制的精度,设计了一种积分滑模面的滑模控制器,可以减弱积分滑模控制的抖振。通过设计一个模糊控制器,根据积分滑模面的大小自适应地调节积分滑模控制的切换部分,达到削弱抖振的目的。利用李亚普诺夫定理证明了控制系统的稳定性。仿真结果表明,改进方法有效地提高了关节机器人跟踪控制性能。  相似文献   

13.
A stable decentralized adaptive fuzzy sliding mode control scheme is proposed for reconfigurable modular manipulators to satisfy the concept of modular software. For the development of the decentralized control, the dynamics of reconfigurable modular manipulators is represented as a set of interconnected subsystems. A first‐order Takagi–Sugeno fuzzy logic system is introduced to approximate the unknown dynamics of subsystem by using adaptive algorithm. The effect of interconnection term and fuzzy approximation error is removed by employing an adaptive sliding mode controller. All adaptive algorithms in the subsystem controller are derived from the sense of Lyapunov stability analysis, so that resulting closed‐loop system is stable and the trajectory tracking performance is guaranteed. The simulation results are presented to show the effectiveness of the proposed decentralized control scheme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
张伟  张蛟龙  宋运忠 《计算机仿真》2012,29(1):123-126,159
研究平面二级倒立摆系统稳定性和速度特性优化问题,由于倒立摆系统的外界扰动的不确定性,建立平面二级倒立摆的数学模型,应用变结构控制理论(SMC)和模糊逻辑系统设计了自适应滑模控制器,把趋近律和切换控制的模糊化相结合,采用模糊系统调整趋近速率的大小,在加快趋近速度的同时用模糊逼近切换控制,为减少控制量的抖振和优化控制系统,同时倒立摆控制具有了滑模控制对外界扰动和参数摄动的不变性。进行仿真的结果验证了控制器的稳定性,表明控制器系统能保证在不同的运行条件下具有快速性和鲁棒性。  相似文献   

15.
机器人操作器的自适应模糊滑模控制器设计   总被引:1,自引:0,他引:1  
针对机器人动力学系统提出了一种基于模糊逻辑的自适应模糊滑模控制方案.根据滑模控制原理并利用模糊系统的逼近能力设计控制器,基于李雅谱诺夫方法设计自适应律,证明了闭环模糊控制系统的稳定性和跟踪误差的收敛性.控制结构简单,不需要复杂的运算.该设计方案柔化了控制信号,减轻了一般滑模控制的抖振现象.仿真结果表明了所提控制策略的有效性.  相似文献   

16.
A new design approach of a multiple-input-multiple-output (MIMO) adaptive fuzzy terminal sliding-mode controller (AFTSMC) for robotic manipulators is described in this article. A terminal sliding-mode controller (TSMC) can drive system tracking error to converge to zero in finite time. The AFTSMC, incorporating the fuzzy logic controller (FLC), the TSMC, and an adaptive scheme, is designed to retain the advantages of the TSMC while reducing the chattering. The adaptive law is designed on the basis of the Lyapunov stability criterion. The self-tuning parameters are adapted online to improve the performance of the fuzzy terminal sliding-mode controller (FTSMC). Thus, it does not require detailed system parameters for the presented AFTSMC. The simulation results demonstrate that the MIMO AFTSMC can provide a reasonable tracking performance.  相似文献   

17.
A type-2 fuzzy logic controller (FLC) is proposed in this article for robot manipulators with joint elasticity and structured and unstructured dynamical uncertainties. The proposed controller is based on a sliding mode control strategy. To enhance its real-time performance, simplified interval fuzzy sets are used. The efficiency of the control scheme is further enhanced by using computationally inexpensive input signals independently of the noisy torque and acceleration signals, and by adopting a trade off strategy between the manipulator’s position and the actuators’ internal stability. The controller is validated through a set of numerical experiments and by comparing it against its type-1 counterpart. It is shown through these experiments the higher performance of the type-2 FLC in compensating for larger magnitudes of uncertainties with severe nonlinearities. This work was partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Microelectronics Corporation (CMC).  相似文献   

18.
This work presents an adaptive fuzzy sliding mode controller (AFSMC) that combines a robust proportional integral control law for use in designing single-input single-output (SISO) nonlinear systems with uncertainties and external disturbances. The fuzzy logic system is used to approximate the unknown system function and the AFSMC algorithm is designed by used of sliding mode control techniques. Based on the Lyapunov theory, the proportional integral control law is designed to eliminate the chattering action of the control signal. The simplicity of the proposed scheme facilitates its implementation and the overall control scheme guarantees the global asymptotic stability in the Lyapunov sense if all the signals involved are uniformly bounded. Simulation studies have shown that the proposed controller shows superior tracking performance.  相似文献   

19.

This work investigates the attitude control of reentry vehicle under modeling inaccuracies and external disturbances. A robust adaptive fuzzy PID-type sliding mode control (AFPID-SMC) is designed with the utilization of radial basis function (RBF) neural network. In order to improve the transient performance and ensure small steady state tracking error, the gain parameters of PID-type sliding mode manifold are adjusted online by using adaptive fuzzy logic system (FLS). Additionally, the designed new adaptive law can ensure that the closed-loop system is asymptotically stable. Meanwhile, the problem of the actuator saturation, caused by integral term of sliding mode manifold, is avoided even under large initial tracking error. Furthermore, to eliminate the need of a priori knowledge of the disturbance upper bound, RBF neural network observer is used to estimate the disturbance information. The stability of the closed-loop system is proved via Lyapunov direct approach. Finally, the numerical simulations verify that the proposed controller is better than conventional PID-type SMC in terms of improving the transient performance and robustness.

  相似文献   

20.
针对PHANTOM Omni机器人的位置轨迹跟踪问题,采用了一种基于模糊逻辑的自适应模糊滑模控制方案。利用滑模控制中的切换函数作为输入,根据模糊系统的逼近能力设计控制器,并基于李雅谱诺夫方法设计自适应律对控制器所需参数进行实时调节。仿真中将其与传统的滑模控制进行了比较,仿真结果表明:自适应模糊滑模控制能使PHANTOM Omni机器人更好地实现期望的位置轨迹跟踪并有效地减轻抖振现象,从而证明了该方法在PHANTOM Omni机器人上实施的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号