首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The medical device conceptual design decision-making is a process of coordinating pertinent stakeholders, which will significantly affect the quality of follow-up market competitiveness. However, as the most challenging parts of user-centered design, traditional methods are mainly focusing on determining the priorities of the evaluation criteria and forming the comprehensive value (utility) of the conceptual scheme, may not fully deal with the interaction and interdependent between the conflicts of interest among stakeholders and weigh the ambiguous influence on the overall design expectations, which results in the unstable decision-making results. To overcome this drawback, this paper proposes a cooperative game theory based decision model for device conceptual scheme under uncertainty. The proposed approach consists of three parts: first part is to collect and classify needs of end users and professional users based on predefined evaluation criteria; second part is using rough set theory technique to create criteria correlation diagram and scheme value matrix from users; and third part is developing the fuzzy coalition utility model to maximize the overall desirability through the criteria correlation diagram with the conflict of interests of end and professional users considered, and then selecting the optimal scheme. A case study of blood pressure meter is used to illustrate the proposed approach and the result shows that this approach is more robust compared with the widely used the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approach.  相似文献   

2.
Quantifying the uncertain linguistic evaluation from decision-makers (DMs) is one of the most challenging parts in the conceptual design decision. Although fuzzy decision models have been widely used to capture potential uncertainty by assigning a fuzzy term with the certain belief, the ambiguity subjective evaluation of semantic variables with conflict beliefs derived from DMs have not been well addressed. To solve this drawback, a concept decision model based on Dempster-Shafer (DS) evidence theory and intuitionistic fuzzy -Vlsekriterijumska Optimizacija I Kompromisno Resenje (VIKOR) considering the ambiguity semantic variables fusion is proposed. Firstly, by incorporating semantic variables of intuitionistic fuzzy sets (IFSs), the diversified semantic judgments and its belief will be taken into account to form an ambiguity semantic initial decision matrix; secondly, the DS combination rule will be used to fuse the different semantic variables of multi-DMs in each scheme, update the belief of each semantic variable, and then the semantic fusion value matrix of the scheme will be constructed; finally, the weight of each evaluation objective will be calculated based on the value matrix and information entropy model, IFS-VIKOR model will be constructed to rank the concepts. A case study of the tree climbing and trimming machine will be employed to verify the proposed decision model. This decision model considering diversifying semantic variables and the conflict belief is proven to be effective compared with the IFS-SAW and ISF-TOPSIS.  相似文献   

3.
The US Federal Aviation Administration (FAA) has developed a standard set of colors for coding information on air traffic control (ATC) displays. A significant complication was that the air traffic controller population includes people who have color-vision deficiencies (CVDs). We wrote a software tool to assist the FAA in selecting a preliminary color set. It accepts a set of luminances and chromaticity coordinates as input and: (1) Draws graphics and calculates color-related figures of merit to predict whether the set will be acceptable for color-normal and CVD users; (2) Flags colors and pairings that violate human factors criteria; and (3) Allows designers to adjust the colors and see the resulting changes immediately. The tool has been used to perform a pilot study for the FAA’s color-set development project and should be useful for designing other color-coding sets, also.  相似文献   

4.
This paper presents a novel denoising approach based on deep learning and signal processing to improve communication efficiency. Construction activities take place when different trades come to the site for overlapped periods to perform their works, which may easily produce hazardous noise levels. The existence of noise affects workers' health issues, especially hearing and rhythm of the heart, and impacts communication efficiency between workers. The proposed approach employs signal processing technique to transform the noisy audio into image and utilize neural networks to extract noisy features and denoise the image. The denoised image is then converted to obtain the denoised audio. Experiments on reducing the side effect of several common noises in construction sites were conducted, compared with the performance of denoising using conventional wavelet transform. Standard objective measures, such as signal-to-noise ratio (SNR), and subjective measures, such as listening tests are used for evaluations. Our experimental results show that the proposed algorithm achieved significant improvements over the traditional method, as evidenced by the following quantitative results of median value: MSE of 0.002, RMSE of 0.049, SNR of 5.7 dB, PSNR of 25.8 dB, and SSR of 8.Results indicate that the proposed algorithm outperforms conventional denoising methods in terms of both objective and subjective evaluation metrics and have the potential to facilitate communication between site workers when facing different noise sources inevitably.  相似文献   

5.
The maturity of Industrial 4.0 technologies (smart wearable sensors, Internet of things [IoT], cloud computing, etc.) has facilitated the iteration and digitization of rehabilitation assistive devices (RADs) and the innovative development of intelligent manufacturing systems of RADs, expanding the value-added component of smart healthcare services. The intelligent manufacturing service mode, based on the concept of the product life cycle, completes the multi-source data production process analysis and the optimization of manufacturing, operation, and maintenance through intelligent industrial Internet of things and other means and improves the product life cycle management and operation mechanism. The smart product-service system (PSS) realizes the value-added of products by providing users with personalized products and value-added services, service efficiency, and sustainable development and gradually forms an Internet-product-service ecosystem. However, research on the PSS of RADs for special populations is relatively limited. Thus, this paper provides an overview of an IoT-based production model for RADs and a smart PSS-based development method of multimodal healthcare value-added services for special people. Taking the hand rehabilitation training devices for autistic children as a case, this paper verifies the effectiveness and availability of the proposed method. Compared with the traditional framework, the method used in this paper primarily helps evaluate rehabilitation efficacy, personalizes schemes for patients, provides auxiliary intelligent manufacturing service data and digital rehabilitation data for RAD manufacturers, and optimizes the product iteration development procedures by combining user-centered product interaction, multimodal evaluation, and value-added design. This study incorporates the iterative design of RADs into the process of smart PSS to provide some guidance to the RADs design manufacturers.  相似文献   

6.
The mechanical product design process involves much experiential reasoning which relies extensively on accumulated experience knowledge and ambiguous synthetic decision of experts (ASDE). This makes it hard to achieve the automated, intelligent and rapid design of mechanical products. Furthermore, due to the lack of consideration of experts' cognition of product functions and structures in the application of the current case-based reasoning (CBR) method in the field of automated experiential reasoning (AER), the parameter solving process is separated from ASDE. Aiming at improving the accuracy and intelligence level of AER in mechanical product design, this paper proposed a parameter-extended CBR (PECBR) method based on a functional basis by integrating ASDE into AER. The PECBR method mainly contains two parts: firstly, in order to acquire and quantitatively describe expert experiential knowledge to provide an effective basis for AER, a knowledge representation method integrating a function-flow-parameter matrix set (FFP-MS) using functional bases and a parameter experiential correlation matrix (PEC-M) extracted from FFP-MS were presented for mechanical products, where the FFP-MS characterized the operation of function and energy flow during the working process of products. An acquisition rule for FFP-MS was designed to extract the degree of correlation between each two parameters, in which the implicit knowledge hiding among functions, flows and parameters was mined to form PEC-M; secondly, to cope with the difficulty in integrating ASDE into AER, a feature-weighted case adaptation (FCA) method was proposed by adopting a presented weighted kernel support vector machine (WK-SVM) and dynamic particle swarm optimization (DPSO). The FCA method can achieve the intelligent and automated solving of product parameters through identifying PEC-M during the case adaptation process. Two case studies on two-stage reducers and corn huskers were carried out to demonstrate the validity of the PECBR method. Compared with other conventional CBR methods, PECBR method can derive a more accurate value of parameters in mechanical product designs especially in the case of limited similar cases.  相似文献   

7.
Conceptual design evaluation plays a crucial role in new product development (NPD) and determines the quality of downstream design activities. Currently, most existing methods focus on fuzzy quantitative the evaluation information of multi-objectives in conceptual schemes selection. However, the above process ignores the various customers' preferences for each scheme under the evaluation objective, causing inconsistent preference weights in the various schemes, which cannot guarantee the market value of the optimal scheme. Furthermore, the ambiguous attitude from experts in the early design stage is not well taken into account. To this end, a conceptual scheme decision model with considering diverse customer preference distribution based on interval-valued intuitionistic fuzzy set (IVIFS) is proposed. The model is divided into three parts. Firstly, the initial decision matrix of multi-experts concerning the qualitative and quantitative design attributes is constructed based on intuitionistic fuzzy sets, and then the IFS decision matrix with interval boundaries is formed by using rough set technology. Secondly, the mapping model of design attribute to customer preference is constructed, and then the demand preference strategy implied by design attribute is judged. Thirdly, based on the demand preference strategy, the preferences’ weights for each scheme are calculated. Next, integrating the evaluation data with the same preference in the scheme, the comprehensive satisfaction of the scheme is obtained through IVIFS weighted aggregation operator, and then the optimal scheme is decided. Eventually, a case study of mobile phone form feature schemes is further employed to verify the proposed decision model, and results are sensitivity analyzed and compared.  相似文献   

8.
9.
With the ever-increasing demand for personalized product functions, product structure becomes more and more complex. To design a complex engineering product, it involves mechanical, electrical, automation and other relevant fields, which requires a closer multidisciplinary collaborative design (MCD) and integration. However, the traditional design method lacks multidisciplinary coordination, which leads to interaction barriers between design stages and disconnection between product design and prototype manufacturing. To bridge the gap, a novel digital twin-enabled MCD approach is proposed. Firstly, the paper explores how to converge the MCD into the digital design process of complex engineering products in a cyber-physical system manner. The multidisciplinary collaborative design is divided into three parts: multidisciplinary knowledge collaboration, multidisciplinary collaborative modeling and multidisciplinary collaborative simulation, and the realization methods are proposed for each part. To be able to describe the complex product in a virtual environment, a systematic MCD framework based on the digital twin is further constructed. Integrate multidisciplinary collaboration into three stages: conceptual design, detailed design and virtual verification. The ability to verify and revise problems arising from multidisciplinary fusions in real-time minimizes the number of iterations and costs in the design process. Meanwhile, it provides a reference value for complex product design. Finally, a design case of an automatic cutting machine is conducted to reveal the feasibility and effectiveness of the proposed approach.  相似文献   

10.
Reliable and accurate ship motion prediction is essential for ship navigation at sea and marine operations. Although previous studies have yielded rich results in the field of ship motion prediction, most of them have ignored the importance of the dynamic characteristics of ship motion for constructing forecasting models. Besides, the limitations of the single model and the autocorrelation characteristics of the residual series are also unfavorable factors that hinder the forecasting performance. To fill these gaps, a multi-objective heterogeneous integration model based on decomposition-reconstruction mechanism and adaptive segmentation error correction method is proposed in this paper for ship motion multi-step prediction. Specifically, the proposed model is divided into three stages, which are decomposition-reconstruction mechanism, multi-objective heterogeneous integration model and adaptive segmentation error correction method. The effectiveness of the proposed model is verified using four sets of real ship motion data collected from two sites in the South China Sea. The evaluation results show that the proposed model can effectively improve the prediction performance and outperforms other traditional models and state-of-the-art models in the field of ship motion prediction. Prospectively, the model proposed in this study can be used as an effective aid to ship warning systems and has the potential for practical application in ship marine operations.  相似文献   

11.
Information extracted from aerial photographs is widely used in the fields of urban planning and design. An effective method for detecting buildings in aerial photographs is to use deep learning to understand the current state of a target region. However, the building mask images used to train the deep learning model must be manually generated in many cases. To overcome this challenge, a method has been proposed for automatically generating mask images by using textured three-dimensional (3D) virtual models with aerial photographs. Some aerial photographs include clouds, which degrade image quality. These clouds can be removed by using a generative adversarial network (GAN), which leads to improvements in training quality. Therefore, the objective of this research was to propose a method for automatically generating building mask images by using 3D virtual models with textured aerial photographs. In this study, using GAN to remove clouds in aerial photographs improved training quality. A model trained on datasets generated by the proposed method was able to detect buildings in aerial photographs with IoU = 0.651.  相似文献   

12.
With the acceleration of the upgrading of the automobile consumption market, artificial intelligence has become an increasingly effective means of enhancing the creative design of automobile appearance modeling. However, when artificial intelligence processes specific design tasks, creativity is primarily based on data drive, resulting in machine-generated design schemes that do not match human-specific psychological intentions. Due to the absence of design knowledge in the process of machine design, there is a data gap between human cognitive thought and machine information processing. This paper aims to structure the human's complex cognitive knowledge of car frontal form, establish the consistency between human and machine cognitive structures, and reduce communication barriers in the process of human–machine hybrid creative design. To achieve this objective, a human–machine hybrid intelligence methodology – a combination of human cognitive mental model, human–machine shared knowledge base, and Generative Adversarial Networks (GAN) – was developed to generate a large number of car frontal forms that are consistent with the design intent. First, we constructed a mental model of human cognition based on three dimensions: design intent, drawing behavior, and functional structure. Second, we created a shared human–machine knowledge base with design Knowledge. This knowledge base contains 12,560 images of car frontal form designs with corresponding morphological semantic labels and 3,140 sketches of car frontal forms drawn by hand. Human–machine shared knowledge base data was utilized in a machine learning training network. In addition, a conditional cross-domain generative adversarial network was developed to investigate the implicit relationship between sketch characteristics, morphological semantics, and image visual effects. Using the suggested method, a large number of images with the specified morphological semantic category and resembling the hand-drawn sketch of a car frontal form can be generated rapidly. In terms of the quality of car frontal form generation, our research is superior to the baseline model according to qualitative and quantitative assessments. In comparison to the designer's output, the human–machine hybrid intelligent generation also demonstrates excellent creative performance.  相似文献   

13.
Target design methodologies (DfX) were developed to cope with specific engineering design issues such as cost-effectiveness, manufacturability, assemblability, maintainability, among others. However, DfX methodologies are undergoing the lack of real integration with 3D CAD systems. Their principles are currently applied downstream of the 3D modelling by following the well-known rules available from the literature and engineers’ know-how (tacit internal knowledge).This paper provides a method to formalize complex DfX engineering knowledge into explicit knowledge that can be reused for Advanced Engineering Informatics to aid designers and engineers in developing mechanical products. This research work wants to define a general method (ontology) able to couple DfX design guidelines (engineering knowledge) with geometrical product features of a product 3D model (engineering parametric data). A common layer for all DfX methods (horizontal) and dedicated layers for each DfX method (vertical) allow creating the suitable ontology for the systematic collection of the DfX rules considering each target. Moreover, the proposed framework is the first step for developing (future work) a software tool to assist engineers and designers during product development (3D CAD modelling).A design for assembly (DfA) case study shows how to collect assembly rules in the given framework. It demonstrates the applicability of the CAD-integrated DfX system in the mechanical design of a jig-crane. Several benefits are recognized: (i) systematic collection of DfA rules for informatics development, (ii) identification of assembly issues in the product development process, and (iii) reduction of effort and time during the design review.  相似文献   

14.
Clamping quality is one of the main factors that will affect the deformation of thin-walled parts during their processing, which can then directly affect parts’ performance. However, traditional clamping force settings are based on manual experience, which is a random and inaccurate manner. In addition, dynamic clamping force adjustment according to clamping deformation is rarely considered in clamping force control process, which easily causes large clamping deformation and low machining accuracy. To address these issues, this study proposes a digital twin-driven clamping force control approach to improve the machining accuracy of thin-walled parts. The total factor information model of clamping system is built to integrate the dynamic information of the clamping process. The virtual space model is constructed based on finite element simulation and deep neural network algorithm. To ensure bidirectional mapping of physical-virtual space, the workflow of clamping force control and interoperability method between digital twin models are elaborated. Finally, a case study is used to verify the effectiveness and feasibility of the proposed method.  相似文献   

15.
Transfer learning (TL) is a machine learning (ML) method in which knowledge is transferred from the existing models of related problems to the model for solving the problem at hand. Relational TL enables the ML models to transfer the relationship networks from one domain to another. However, it has two critical issues. One is determining the proper way of extracting and expressing relationships among data features in the source domain such that the relationships can be transferred to the target domain. The other is how to do the transfer procedure. Knowledge graphs (KGs) are knowledge bases that use data and logic to graph-structured information; they are helpful tools for dealing with the first issue. The proposed relational feature transfer learning algorithm (RF-TL) embodies an extended structural equation modelling (SEM) as a method for constructing KGs. Additionally, in fields such as medicine, economics, and law related to people’s lives and property safety and security, the knowledge of domain experts is a gold standard. This paper introduces the causal analysis and counterfactual inference in the TL domain that directs the transfer procedure. Different from traditional feature-based TL algorithms like transfer component analysis (TCA) and CORelation Alignment (CORAL), RF-TL not only considers relations between feature items but also utilizes causality knowledge, enabling it to perform well in practical cases. The algorithm was tested on two different healthcare-related datasets — sleep apnea questionnaire study data and COVID-19 case data on ICU admission — and compared its performance with TCA and CORAL. The experimental results show that RF-TL can generate better transferred models that give more accurate predictions with fewer input features.  相似文献   

16.
The deterministic and probabilistic prediction of ship motion is important for safe navigation and stable real-time operational control of ships at sea. However, the volatility and randomness of ship motion, the non-adaptive nature of single predictors and the poor coverage of quantile regression pose serious challenges to uncertainty prediction, making research in this field limited. In this paper, a multi-predictor integration model based on hybrid data preprocessing, reinforcement learning and improved quantile regression neural network (QRNN) is proposed to explore the deterministic and probabilistic prediction of ship pitch motion. To validate the performance of the proposed multi-predictor integrated prediction model, an experimental study is conducted with three sets of actual ship longitudinal motions during sea trials in the South China Sea. The experimental results indicate that the root mean square errors (RMSEs) of the proposed model of deterministic prediction are 0.0254°, 0.0359°, and 0.0188°, respectively. Taking series #2 as an example, the prediction interval coverage probabilities (PICPs) of the proposed model of probability predictions at 90%, 95%, and 99% confidence levels (CLs) are 0.9400, 0.9800, and 1.0000, respectively. This study signifies that the proposed model can provide trusted deterministic predictions and can effectively quantify the uncertainty of ship pitch motion, which has the potential to provide practical support for ship early warning systems.  相似文献   

17.
The China-Pakistan Economic Corridor (CPEC) is considered as an excellent breakthrough for improving the economic and security situation in the region. The estimated worth of CPEC is 62$ billion which is comprising of 49 developmental projects. China-Pakistan Fiber Optic Project (CPFOP) is one of the core projects among these, which will deliver safe route of voice traffic between both countries. CPFOP is greatly beneficial in terms of enhanced security and revenue generation. Currently, Pakistan’s international connectivity is via submarine cables. CPFOP will provide an alternative route for international telecom traffic and also assist in achieving the rapidly growing internet traffic demand in Pakistan. It is estimated that 17 million people will get benefit from this project. However, every project has some undesirable impacts. The aim of this research paper is twofold; 1st to trace out the pros and cons of CPFOP. 2ndly, performing a risk assessment of CPFOP by using Fuzzy VIKOR technique. This approach will help in prioritizing a list of failure modes of Fiber Optic Cable (FOC). Lastly, this paper will help authorities for optimizing and safeguarding national interest in the wake of CPFOP.  相似文献   

18.
Metro shield construction will inevitably cause changes in the stress and strain state of the surrounding soil, resulting in stratum deformation and surface settlement (SS), which will seriously endanger the safety of nearby buildings, roads and underground pipe networks. Therefore, in the design and construction stage, optimizing the shield construction parameters (SCP) is the key to reducing the SS rate and increasing the safe driving speed (DS). However, optimization of existing SCP are challenged by the need to construct a unified multiobjective model for optimization that are efficient, convenient, and widely applicable. This paper innovatively proposes a hybrid intelligence framework that combines random forest (RF) and non-dominant classification genetic algorithm II (NSGA-II), which overcomes the shortcomings of time-consuming and high cost for the establishment and verification of traditional prediction models. First, RF is used to rank the importance of 10 influencing factors, and the nonlinear mapping relationship between the main SCP and the two objectives is constructed as the fitness function of the NSGA-II algorithm. Second, a multiobjective optimization framework for RF-NSGA-II is established, based on which the optimal Pareto front is calculated, and reasonable optimized control ranges for the SCP are obtained. Finally, a case study in the Wuhan Rail Transit Line 6 project is examined. The results show that the SS is reduced by 12.5% and the DS is increased by 2.5% with the proposed framework. Meanwhile, the prediction results are compared with the back-propagation neural network (BPNN), support vector machine (SVM), and gradient boosting decision tree (GBDT). The findings indicate that the RF-NSGA-II framework can not only meet the requirements of SS and DS calculation, but also used as a support tool for real-time optimization and control of SCP.  相似文献   

19.
Quality control is a critical aspect of the modern electronic circuit industry. In addition to being a pre-requisite to proper functioning, circuit quality is closely related to safety, security, and economic issues. Quality control has been reached through system testing. Meanwhile, device miniaturization and multilayer Printed Circuit Boards have increased the electronic circuit test complexity considerably. Hence, traditional test processes based on manual inspections have become outdated and inefficient. More recently, the concept of Advanced Manufacturing or Industry 4.0 has enabled the manufacturing of customized products, tailored to the changing customers’ demands. This scenario points out additional requirements for electronic system testing: it demands a high degree of flexibility in production processes, short design and manufacturing cycles, and cost control. Thus, there is a demand for circuit testing systems that present effectiveness and accessibility without placing numerous test points. This work is focused on automated test solutions based on machine learning, which are becoming popular with advances in computational tools. We present a new testing approach that uses autoencoders to detect firmware or hardware anomalies based on the electric current signature. We built a test set-up using an embedded system development board to evaluate the proposed approach. We implemented six firmware versions that can run independently on the test board – one of them is considered anomaly-free. In order to obtain a reference frame to our results, two other classification techniques (a computer vision algorithm and a random forest classification model) were employed to detect anomalies on the same development board. The outcomes of the experiments demonstrated that the proposed test method is highly effective. For several test scenarios, the correct detection rate was above 99%. Test results showed that autoencoder and random forest approaches are effective. However, random forests require all data classes to be trained. Training an autoencoder, on the other hand, only requires the reference (anomaly-free) class.  相似文献   

20.
Process industry systems under unstable working conditions are prone to potential anomalies, deviating from the original transition trajectory, and taking longer than expected to return to stability due to persistent disturbances from uncertainties and experience-based regulation errors. The energy waste caused by this situation has not received sufficient attention, and cannot be addressed by existing energy consumption monitoring methods. Herein, an energy consumption mode (ECM) identification and monitoring method under unstable working conditions is proposed, consisting of ECM identification model and multi-mode dynamic monitoring model, focusing on the variation rules of the correlation between energy consumption and other states of the system. In the ECM identification stage, the ECM correlation parameters that reflect the comprehensive production information are selected. Then, given the transfer characteristics of ECM, a Hidden Semi-Markov Model (HSMM) is constructed to fit the migration between modes and the duration within modes. The Variational Bayesian Gaussian Mixture Model is introduced to improve the HSMM, which solves the problem of lacking prior knowledge of ECM and achieves the automatic classification and online identification of ECM. In the dynamic monitoring stage of multi-ECMs, a series of dynamic kernel principle component analysis models are established, and the corresponding monitoring thresholds are set for each ECM. By calculating the maximum of the posteriori probability and the mode thresholds, the ECMs under unstable conditions can be accurately identified and automatically monitored. Compared with previous methods, the proposed method reduces the false detection rate and missed detection rate of abnormal ECM identification to 1.04% and 1.31% in the actual slag grinding production process, which proves its effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号