首页 | 官方网站   微博 | 高级检索  
     


Deterministic and probabilistic ship pitch prediction using a multi-predictor integration model based on hybrid data preprocessing,reinforcement learning and improved QRNN
Affiliation:1. School of Electronic Information, Wuhan University, Wuhan 430072, China;2. China Ship Development and Design Center, Wuhan 430064, China;3. Institute of Artificial Intelligence and Robotics (IAIR), Key Laboratory of Traffic Safety on Track of Ministry of Education, School of Traffic and Transportation Engineering, Central South University, Changsha 410075, Hunan, China;1. School of Mechanical Engineering, University of Shanghai for Science and Technology, China;2. School of Mechanical Engineering, Jiangsu University, China;3. College of Engineering, Coventry University, Coventry, UK;4. School of Physics, Engineering & Computer Science, University of Hertfordshire, UK;1. School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA;2. Federal Aviation Administration, Atlantic City Int’l Airport, NJ 08405, USA
Abstract:The deterministic and probabilistic prediction of ship motion is important for safe navigation and stable real-time operational control of ships at sea. However, the volatility and randomness of ship motion, the non-adaptive nature of single predictors and the poor coverage of quantile regression pose serious challenges to uncertainty prediction, making research in this field limited. In this paper, a multi-predictor integration model based on hybrid data preprocessing, reinforcement learning and improved quantile regression neural network (QRNN) is proposed to explore the deterministic and probabilistic prediction of ship pitch motion. To validate the performance of the proposed multi-predictor integrated prediction model, an experimental study is conducted with three sets of actual ship longitudinal motions during sea trials in the South China Sea. The experimental results indicate that the root mean square errors (RMSEs) of the proposed model of deterministic prediction are 0.0254°, 0.0359°, and 0.0188°, respectively. Taking series #2 as an example, the prediction interval coverage probabilities (PICPs) of the proposed model of probability predictions at 90%, 95%, and 99% confidence levels (CLs) are 0.9400, 0.9800, and 1.0000, respectively. This study signifies that the proposed model can provide trusted deterministic predictions and can effectively quantify the uncertainty of ship pitch motion, which has the potential to provide practical support for ship early warning systems.
Keywords:Multi-predictor integration  Hybrid data preprocessing  Reinforcement learning  Quantile regression neural network  Deterministic and probabilistic prediction  Ship pitch motion  AR"}  {"#name":"keyword"  "$":{"id":"k0040"}  "$$":[{"#name":"text"  "_":"autoregressive  GRU"}  {"#name":"keyword"  "$":{"id":"k0050"}  "$$":[{"#name":"text"  "_":"gated recurrent unit  ORELM"}  {"#name":"keyword"  "$":{"id":"k0060"}  "$$":[{"#name":"text"  "_":"outlier-robust extreme learning machine  BiLSTM"}  {"#name":"keyword"  "$":{"id":"k0070"}  "$$":[{"#name":"text"  "_":"bidirectional long short-term memory  EMD-SVR"}  {"#name":"keyword"  "$":{"id":"k0080"}  "$$":[{"#name":"text"  "_":"empirical mode decomposition-support vector regression  EMD"}  {"#name":"keyword"  "$":{"id":"k0090"}  "$$":[{"#name":"text"  "_":"empirical mode decomposition  SVR"}  {"#name":"keyword"  "$":{"id":"k0100"}  "$$":[{"#name":"text"  "_":"support vector regression  EWT"}  {"#name":"keyword"  "$":{"id":"k0110"}  "$$":[{"#name":"text"  "_":"empirical wavelet transform  SSA"}  {"#name":"keyword"  "$":{"id":"k0120"}  "$$":[{"#name":"text"  "_":"singular spectrum analysis  GWO"}  {"#name":"keyword"  "$":{"id":"k0130"}  "$$":[{"#name":"text"  "_":"grey wolf optimizer  ENN"}  {"#name":"keyword"  "$":{"id":"k0140"}  "$$":[{"#name":"text"  "_":"Elman neural network  BPNN"}  {"#name":"keyword"  "$":{"id":"k0150"}  "$$":[{"#name":"text"  "_":"back propagation neural network  GRNN"}  {"#name":"keyword"  "$":{"id":"k0160"}  "$$":[{"#name":"text"  "_":"generalized regression neural network  WNN"}  {"#name":"keyword"  "$":{"id":"k0170"}  "$$":[{"#name":"text"  "_":"wavelet neural network  QR"}  {"#name":"keyword"  "$":{"id":"k0180"}  "$$":[{"#name":"text"  "_":"quantile regression  QRNN"}  {"#name":"keyword"  "$":{"id":"k0190"}  "$$":[{"#name":"text"  "_":"quantile regression neural network  PSO"}  {"#name":"keyword"  "$":{"id":"k0200"}  "$$":[{"#name":"text"  "_":"particle swarm optimization  WHO"}  {"#name":"keyword"  "$":{"id":"k0210"}  "$$":[{"#name":"text"  "_":"wild horse optimizer  SEGOBQWQ"}  {"#name":"keyword"  "$":{"id":"k0220"}  "$$":[{"#name":"text"  "_":"SSA-EWT-GRU-ORELM-BiLSTM-Q-learning-WHO-QRNN  SVD"}  {"#name":"keyword"  "$":{"id":"k0230"}  "$$":[{"#name":"text"  "_":"singular value decomposition  AM-FM"}  {"#name":"keyword"  "$":{"id":"k0240"}  "$$":[{"#name":"text"  "_":"amplitude modulation-frequency modulation  ELM"}  {"#name":"keyword"  "$":{"id":"k0250"}  "$$":[{"#name":"text"  "_":"extreme learning machine  LSTM"}  {"#name":"keyword"  "$":{"id":"k0260"}  "$$":[{"#name":"text"  "_":"long short-term memory  MPICD"}  {"#name":"keyword"  "$":{"id":"k0270"}  "$$":[{"#name":"text"  "_":"Mean Prediction Interval Centre Deviation  SampEn"}  {"#name":"keyword"  "$":{"id":"k0280"}  "$$":[{"#name":"text"  "_":"sample entropy  MAE"}  {"#name":"keyword"  "$":{"id":"k0290"}  "$$":[{"#name":"text"  "_":"mean absolute error  MAPE"}  {"#name":"keyword"  "$":{"id":"k0300"}  "$$":[{"#name":"text"  "_":"mean absolute percentage error  RMSE"}  {"#name":"keyword"  "$":{"id":"k0310"}  "$$":[{"#name":"text"  "_":"root mean square error  Promoting percentages of the MAE  Promoting percentages of the MAPE  Promoting percentages of the RMSE  PICP"}  {"#name":"keyword"  "$":{"id":"k0350"}  "$$":[{"#name":"text"  "_":"Prediction Interval Coverage Probability  PINAW"}  {"#name":"keyword"  "$":{"id":"k0360"}  "$$":[{"#name":"text"  "_":"Prediction Interval Normalized Average Width  CWC"}  {"#name":"keyword"  "$":{"id":"k0370"}  "$$":[{"#name":"text"  "_":"Coverage Width-based Criterion  GOBQ"}  {"#name":"keyword"  "$":{"id":"k0380"}  "$$":[{"#name":"text"  "_":"GRU-ORELM-BiLSTM-Q-learning  SGOBQ"}  {"#name":"keyword"  "$":{"id":"k0390"}  "$$":[{"#name":"text"  "_":"SSA-GRU-ORELM-BiLSTM-Q-learning  EGOBQ"}  {"#name":"keyword"  "$":{"id":"k0400"}  "$$":[{"#name":"text"  "_":"EWT-GRU-ORELM-BiLSTM-Q-learning  SEGOBQ"}  {"#name":"keyword"  "$":{"id":"k0410"}  "$$":[{"#name":"text"  "_":"SSA-EWT-GRU-ORELM-BiLSTM-Q-learning  WT"}  {"#name":"keyword"  "$":{"id":"k0420"}  "$$":[{"#name":"text"  "_":"wavelet transform  SVM"}  {"#name":"keyword"  "$":{"id":"k0430"}  "$$":[{"#name":"text"  "_":"support vector machine  RBFNN"}  {"#name":"keyword"  "$":{"id":"k0440"}  "$$":[{"#name":"text"  "_":"radial basis function neural network  WSBGG"}  {"#name":"keyword"  "$":{"id":"k0450"}  "$$":[{"#name":"text"  "_":"WT-SVM-BP-GRU-GWO  DRLOQ"}  {"#name":"keyword"  "$":{"id":"k0460"}  "$$":[{"#name":"text"  "_":"EMD-RBFNN-LSTM-ORELM-Q-learning  SWBGBQ"}  {"#name":"keyword"  "$":{"id":"k0470"}  "$$":[{"#name":"text"  "_":"SSA-WT-BP-GRU-BiLSTM-Q-learning  SEGLOG"}  {"#name":"keyword"  "$":{"id":"k0480"}  "$$":[{"#name":"text"  "_":"SSA-EWT-GRU-LSTM-ORELM-GWO  SDGOBQ"}  {"#name":"keyword"  "$":{"id":"k0490"}  "$$":[{"#name":"text"  "_":"SSA-EMD-GRU-ORELM-BiLSTM-Q-learning  CLs"}  {"#name":"keyword"  "$":{"id":"k0500"}  "$$":[{"#name":"text"  "_":"confidence levels
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号