首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 329 毫秒
1.
讨论了与两种不同转向控制策略相应的人-车闭环系统的运动特性,即通过给转向盘施加转向力矩或传转向盘一定角度来实施基 向的策略。仿真计算表明,当不转向度小的汽车高速行驶时,驾驶员采用给转向盘施加转向力矩的控制略具有更小的跟随误差,并且校正参数的变化也小得多,这说明采用此策略对车况的改变有更好的适应性。  相似文献   

2.
针对汽车经过凸块或不平路面时导致转向盘上产生过大冲击力矩给驾驶员带来不适感的问题,通过建立电动助力转向动力学模型估计折算到转向小齿轮上的路面冲击力矩,最终确定出路面冲击补偿电流,用以衰减由路面冲击而产生的转向盘冲击力矩。实车试验结果表明,本文方法能够在不增加电动助力转向系统元件的基础上,有效衰减转向盘冲击力矩,有较好的实际应用价值。  相似文献   

3.
基于模糊控制的并联式混合动力汽车制动控制系统   总被引:1,自引:0,他引:1  
在分析和比较混合动力电动汽车(HEV)不同制动控制策略的基础上,提出了一种新的制动控制策略。在MATLAB/Simulink环境下搭建了制动系统控制模型。考虑到能量回收制动力矩和总制动力矩的连续变化,采用模糊控制策略对液压制动力矩进行动态调整。能量回收制动力矩和液压制动力矩在该控制策略下能够协同工作。仿真结果证明该控制策略有效,鲁棒性好。  相似文献   

4.
考虑到不确定参数和耦合干扰会使系统性能恶化,提出一个一致性协同控制系统研究汽车转向系统和防抱死制动系统的协同控制问题。该控制结构由制动鲁棒自适应控制器和转向一致性鲁棒自适应控制器组成。先设计了制动鲁棒自适应控制器;然后针对转向系统和制动系统之间的补偿控制律难以确定的困难,定义一致性误差和一致性误差模型;设计转向角和横摆力矩的一致性鲁棒自适应控制器;最后设计制动力分配策略。仿真结果证明提出的一致性协同控制系统是正确可行的,它改善了汽车制动稳定性能和转向性能。  相似文献   

5.
电动助力转向系统转矩控制策略   总被引:2,自引:0,他引:2  
对电动助力转向控制系统的综合控制策略进行了理论分析,依据控制时机选择控制模式来确定目标转矩,从而实现转向控制.为改善汽车转向轻便性和路感,设计了在无角度传感器的情况下以转向盘转矩为控制目标的电动助力转向系统.在分析电动助力转向系统数学模型的基础上,建立了基于Simulink的电动助力转向系统仿真模型,进行了仿真分析.仿真结果表明:所设计的电动助力转向系统,在改善转向轻便性和路感的同时,控制性能不受系统参数变化的影响,具有稳定的转向盘转矩特性;目标转矩的控制采用PID调节器,应用力矩传感器检测转矩和电机作用转矩来估算转向盘角度,不同的转向盘角度采用不同的助力比,更符合驾驶员的驾驶习惯,使转矩调节更平稳.  相似文献   

6.
汽车电动助力转向系统控制策略的探讨   总被引:3,自引:0,他引:3  
介绍了电动助力转向系统的组成及原理,提出了助力电动机的模糊控制策略,并和PD控制策略做了比较。仿真结果表明,对于路面冲击而言,采用模糊控制策略的转向系统比采用PD控制的转向系统可以更快地稳定。  相似文献   

7.
通过建立整车三自由度简化动力学参考模型,采用动态横向载荷转移率门限值识别车辆侧倾危险工况,并使用车轮制动力分配控制策略对整车施加侧倾补偿力矩。通过搭建的电控制动系统硬件在环实验台对本文控制策略进行试验验证,结果表明:本文控制策略可以减小整车横向载荷转移率和侧倾角,有效保证了整车侧倾稳定性。  相似文献   

8.
汽车线控四轮转向控制策略   总被引:1,自引:0,他引:1  
基于转向传动比随汽车速度和方向盘转角而变化,提出了前轮控制、侧滑率反馈控制和侧滑率及加速度反馈控制三种前轮线控转向的稳定性控制策略,并进行了驾驶模拟器试验评价。结合后轮主动转向研究了分别采用前馈控制方式和反馈控制方式的线控四轮转向系统的转向控制策略,并将其与前轮线控转向和传统四轮转向系统进行了比较。仿真和模拟器试验验证了线控四轮转向系统能有效提高汽车的操纵稳定性。  相似文献   

9.
从汽车的制动稳定性出发,在14自由度汽车动力学模型和G.Gim轮胎模型的基础上,研究了一种集成汽车防抱死制动系统、主动前轮转向系统和直接横摆力矩控制系统的集成控制系统,并制定了3个子系统协调控制规则。最后,通过仿真实验表明,该研究提高了汽车制动效能和制动稳定性。  相似文献   

10.
两种输入模型下的汽车逆问题分析   总被引:1,自引:1,他引:0  
针对汽车操纵逆动力学的研究现状,提出了一种识别方向盘输入的新方法.建立了驾驶员-汽车二自由度闭环系统角输入模型和考虑转向系转动惯量的汽车三自由度力矩输入模型.通过角输入情况下,汽车沿蛇行线行驶以及力输入情况下的高速、小侧向加速度的正弦曲线行驶,利用径向基函数网络,分别建立了汽车横摆角速度、侧向加速度与方向盘转角以及汽车侧向加速度与方向盘力矩之间的映射关系.两种输入模型下的识别结果表明,识别值和仿真值比较吻合,因此利用径向基网络识别方向盘角输入和力矩输入的方法是可行的,并且具有识别精度高,运算速度快,抗噪能力强等优点.  相似文献   

11.
分析了履带车辆复杂多变的行驶工况,针对车辆行驶状态参数、路面状况和驾驶员操纵信息的人-车-路闭环系统,确定了履带车辆智能换挡控制的主要原则.运用智能控制理论,提出了履带车辆自动变速系统实现模糊神经网络控制的总体方案和技术路线,系统可自动适应复杂多变的车内外行驶情况,以提高履带车辆的动力性和越野机动性.  相似文献   

12.
为提高匹配机械弹性车轮汽车在高速紧急避障时的效率与安全性,在Simulink中建立了整车非线性八自由度模型,并基于车轮样机台架试验数据,利用Matlab遗传算法工具箱对机械弹性车轮模型参数进行分级辨识.综合考虑行驶车速、轨迹跟踪误差、方向盘转角以及侧翻评价指标,建立了八自由度驾驶员—汽车预瞄跟随闭环系统模型.分析了汽车在不同行驶车速时所需的方向盘角输入信息与侧翻状态响应,总结出汽车高速转向时的侧翻动态特性.为高速安全通过规划的避障路径,在转向控制驾驶员模型基础上建立了速度控制驾驶员模型,当侧翻评价指标超过安全阈值时利用制动踏板降低车速,当纵向车速小于期望安全车速时利用加速踏板提高车速.仿真分析表明建立的高速避障路径跟踪与控制策略能高效完成避障路径跟踪,同时能有效降低紧急避障时的侧翻风险.  相似文献   

13.
基于理想转向传动比的汽车线控转向控制算法   总被引:1,自引:2,他引:1  
以29自由度汽车动力学模型为基础,提出了保证汽车转向增益不变的理想传动比稳态控制策略,使线控转向汽车转向特性不受车速和方向盘转角变化的影响;提出了基于状态反馈的动态校正稳定性控制算法。仿真和驾驶模拟器实验表明,基于理想转向传动比的稳态控制策略保证了汽车转向增益不变,减轻了驾驶员的负担,适合于更多的驾驶人群;基于状态反馈的动态校正稳定性控制算法有效提高了汽车的稳定性。  相似文献   

14.
建立四轮转向的三自由度模型,采用最优控制理论求得最优反馈增益矩阵,最后应用MATLAB/Simulink软件建立模型进行仿真;在前轮角阶跃输入下,与传统的前轮转向和比例控制的四轮转向车辆进行对比分析;结果表明,所建立的三自由度车辆模型的横摆角速度能够很快达到稳态值;质心侧偏角和侧倾角基本保持为零;降低了驾驶员的驾驶疲劳程度并且提高了行驶安全性和操纵稳定性。  相似文献   

15.
分析了履带车辆行驶状态参数、路面状况和驾驶员操纵信息形成的人-车-路闭环系统,应用采集到的油门开度、车速、加速度、油门开度变化率、累计制动时间等车辆行驶状态参数,运用模糊推理方法,对驾驶员意图和复杂多变的路面状况的模糊特征进行分析,为建立能自动适应复杂行驶工况的车辆智能控制系统奠定了基础.  相似文献   

16.
建立了整车主动悬架和电控液压助力转向系统的动力学模型,分析了接受PID控制的双闭环电控液压助力转向系统输出的转向助力矩,通过车身姿态参数动态调整悬架作动器作用力的大小,实现悬架和转向的集成控制.相对于传统的悬架和转向系统,引入预测控制理论,并建立了预测控制器,既保证了车辆操纵轻便性,又显著提高了整车操纵稳定型、安全性和行驶平顺行等整车综合性能.  相似文献   

17.
基于人工神经网络的汽车闭环系统的研究   总被引:2,自引:0,他引:2  
对于驾驶员-轮胎-汽车闭环系统的研究是全面评价和预估汽车操纵稳定性能的一条能效途径,但用一般数学方法难以精确描述轮胎和驾驶员的非线性特性。利用人工神经网络反映轮胎和驾驶员输入、输出特性之间的非线性映射关系,并将它们与相应的汽车模型结合进行闭环系统仿真。结果表明,人工神经网络可以产生出具有相当准确性及很高计算效率的驾驶员模型和轮胎侧偏特性模型。  相似文献   

18.
基于某型无人机飞行控制地面仿真验证系统的需要,分析了其舵机控制系统各组成部分的原理,利用Simulink工具箱建立了电传舵控系统的数学模型,对转速控制律和位置控制律进行了设计.对带有转速控制回路和未加转速控制回路的舵机控制系统以及加入扰动后的舵机控制系统分别进行了仿真验证.仿真结果表明:所设计的舵机控制系统动态性能及跟踪性能好,抗干扰能力强,能够满足某型无人机飞行控制的要求及飞行控制地面仿真验证系统的需要,为该系统的研究提供了技术保障.  相似文献   

19.
智能探测车避障转向控制   总被引:1,自引:0,他引:1  
针对智能探测车的转向系统是一个具有大延迟、非线性的复杂系统,对其建立精确的数学模型较为困难,且其航向易受到诸多因素干扰的问题,研究了预测控制中的动态矩阵法,提出一种新的智能探测车转向机构模型.该方法用障碍物的方向角和距离偏差作为参数,在预测控制算法中采用动态矩阵控制,输出前轮转向角,再将转向角预测量与实际转向角之和作为反馈,对转向角变化趋势做出预测.通过仿真验证了在不同纵向速度下,加入相同干扰时的系统响应.结果表明,该算法在智能探测车障碍物避让控制中,对外界环境的干扰具有较强的鲁棒性,能够满足智能探测车转向控制要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号