首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
采用单级UASB-A/O组合工艺处理实际高氨氮渗滤液,在获得稳定有机物和氮同步去除的前提下,重点考察了通过控制游离氨(FA)和游离亚硝酸(FNA)快速实现A/O工艺短程硝化的可行性,同时分析了短程硝化影响因素.试验结果表明:在单级UASB反应器内发生高效的反硝化现象,实现了有机物和氮的同步深度去除,系统对COD和NH4+-N的去除率均在90%以上.室温条件下基于高FA和FNA对亚硝酸盐氧化菌(NOB)的协同抑制,A/O反应器内实现并维持了稳定的短程硝化,NO2--N累积率维持在89%~99%.抑制机理分析认为,FA对亚硝酸盐氧化还原酶或对起传递电子、移动质子作用的酶产生抑制.液相基质FNA通过主动扩散作用进入细胞膜,改变胞内pH值,从而影响了氧化磷酸化合成ATP所需的质子力.  相似文献   

2.
Anammox反应器运行稳定性及其机理研究   总被引:4,自引:0,他引:4  
采用模拟废水研究了厌氧氨氧化UBF(upflow biofilm filter)的运行性能。结果表明,在高负荷工况下,厌氧氨氧化反应器的稳定性较差。当容积负荷超过反应器的最大转化潜能时,反应器性能恶化。厌氧氨氧化反应是致碱反应,引起反应器内pH值长期维持在8.50~9.05,超出了厌氧氨氧化菌生长的最适pH范围(6.70~8.30),直接抑制厌氧氨氧化菌的生长和代谢,导致厌氧氨氧化反应器失稳。pH值过高引起反应器内游离亚硝酸浓度(free nitrous acid, FNA)降低至(1.9±4.3)×10-5 mg•L-1~(2.2±2.5)×10-5 mg•L-1,低于Anammox菌FNA半速率常数(KS,FNA),会造成亚硝酸“饥饿”。pH升高还可引起游离氨浓度(free ammonia, FA)升高至178.1 mg•L-1,超过了Anammox菌FA半抑制常数KI,FA,严重抑制Anammox菌的生长和代谢,并加剧反应器性能恶化以致失稳并且不能自行恢复。反应器性能失稳后,应及时用清水从反应器内洗出残余基质,反应器功能可快速恢复。  相似文献   

3.
A/O工艺实现城市污水半亚硝化与生物除磷   总被引:1,自引:0,他引:1  
城市污水半亚硝化是实现其厌氧氨氧化的基础和关键步骤,但相关研究甚少,为此,利用A/O反应器处理实际城市污水,研究实现半亚硝化的可行性及其对生物除磷的影响.结果表明:A/O反应器可实现稳定的亚硝酸盐积累,积累率约为85%;通过调整水力停留时间可控制A/O反应器出水NO2--N/NH4+-N在1.0左右,满足厌氧氨氧化对进水水质的要求;温度和溶解氧质量浓度的波动会导致亚硝酸盐积累的破坏.实现半亚硝化的稳定后,A/O反应器除磷稳定性变差,可能与出水游离亚硝酸质量浓度(FNA)增加有关.  相似文献   

4.
采用SBR工艺以水产品加工废水为研究对象,控制进水游离氨(FA)浓度为4.61 mg/L,研究高游离氨条件下短程硝化反硝化过程,对比试验结果表明:1号反应器只控制进水游离氨浓度,在运行70 d以后,转变为全程硝化,说明单一因素控制短程硝化反硝化并不稳定;2号反应器高进水游离氨条件下,控制DO为1~2 mg/L和进水pH为8.4±0.1,亚硝酸盐积累率稳定在92%以上,现已运行130 d以上,短程硝化反硝化运行稳定,表明通过非单一因素控制可实现短程硝化反硝化稳定运行.  相似文献   

5.
半短程硝化-厌氧氨氧化处理污泥消化液的脱氮研究   总被引:6,自引:0,他引:6  
采用实验室规模的半短程硝化-厌氧氨氧化联合工艺,研究了对高氨氮、低ρ(C)/ρ(N)污泥消化液的处理能力.结果表明,在A/O反应器中,短程硝化在温度9~20℃、平均ρDO=5.4 mg/L、SRT值为30 d左右时,进水氨氮负荷0.64 kg/(m3.d)的条件下,经过29 d得以实现,通过控制游离氨ρFA>4 mg/L时,此后,从30—96 d,出水亚硝氮累积率维持在70%左右;短程硝化实现之后,进而实现了半短程硝化,出水氨氮与亚硝氮浓度比维持在1∶1.32左右;采用UASB反应器,接种由好氧颗粒污泥、厌氧颗粒污泥、氧化沟活性污泥及短程硝化活性污泥组成的混合污泥,在避光、厌氧、(30±0.2)℃、pH=7.3~7.9条件下,以污泥消化液经短程硝化处理后的出水为进水,初期进水氨氮、亚硝氮容积负荷分别为0.07、0.10kg/(m3.d),经过24d运行,氨氮和亚硝氮开始出现同步去除现象,195 d时总氮去除负荷达1.03 kg/(m3.d);待半短程硝化运行稳定和厌氧氨氧化反应成功启动后,将二者联立并运行了105 d,最终总氮去除率达到70%.  相似文献   

6.
快速启动短程硝化过程起始pH值对亚硝酸盐积累的影响   总被引:1,自引:0,他引:1  
为利用实际生活污水快速启动短程硝化,试验采用3个SBR装置在温度为25℃、ρDO=2 mg/L、曝气时间分别为T/2、3T/4、7T/8(T为从曝气开始到"氨谷"出现的时间)时考察亚硝酸盐积累的情况.运行12个周期后,3个反应器中的亚硝酸盐积累率分别为5%、2%、5%.反应器混合液初始pH值从小于7.5水平调节到7.7~8.0,稳定运行几个周期后发现,亚硝酸盐积累率分别提高到了50%、47%、70%,曝气时间为7T/8时的反应器中的亚硝酸盐积累率上升速率最快,成功启动短程硝化.结果表明,在适当的曝气时间下,利用反应体系内pH对硝化菌群结构的影响及FA对硝酸菌的抑制作用可以提高亚硝酸盐积累率,快速启动短程硝化.  相似文献   

7.
针对晚期垃圾渗滤液实现深度除碳脱氮,采用上流式厌氧污泥床(upflow anaerobic sludge blanket,UASB)-缺氧/好氧反应器(anoxic/aerobic reactor,A/O)-厌氧氨氧化反应器(anaerobic sequencing batch reactor,ASBR)组合工艺,以短程硝化-厌氧氨氧化耦合反应为依托,通过UASB实现有机物的大部分降解,在A/O中实现短程硝化,在ASBR中通过厌氧氨氧化深度脱氮.研究结果表明:当进水ρ(CODcr)、ρ(NH_4~+-N)和ρ(TN)分别为2 220 mg/L、1 400~1 450 mg/L和1 450~1 500 mg/L;最终出水分别为98、7、25 mg/L,实现了分别为95.6%、98.3%和99.5%的高去除率.故该工艺无须投加任何外碳源,最终实现化学需氧量(chemical oxygen demand,COD)、氨氮(NH_4~+-N)和总氮(total nitrogen,TN)的高效、深度去除.  相似文献   

8.
在SBR反应器中,接种普通活性污泥,以沉降时间为选择要素,逐渐提高氨氮负荷成功培养了以氨氧化细菌(AOB)为优势菌的好氧硝化颗粒污泥,其形态近似为球形或椭圆形,平均粒径1.1mm,平均沉降速率为1.9cm·S-1,SVI在18.2~31.4mL·g-1之间,对氨氮的去除率达95%,亚硝酸盐积累率维持在809/6~90%。颗粒污泥形成后,氨氧负荷达到了0.0455kgNH4+-N(kgMLSS·d)-1,与启动期相比,提高了4.55倍。分子生物学FISH技术对颗粒污泥茵群结构的定量分析表明,AOB占全部茵群的14.9oA左右,NoB占0.89oA左右。反应初期高FA和反应后期高FNA的共同作用可能是该研究中实现和维持稳定短程硝化的关键。  相似文献   

9.
氨氮对内循环生物流化床亚硝化过程影响   总被引:2,自引:0,他引:2  
为实现内循环生物流化床(ITFB)短程脱氮处理高氨氮废水,在小试ITFB反应器内考察了氨氮浓度对生物膜亚硝化特性的影响.通过5个月的连续试验,研究了ITFB反应器历经启动培养、短暂亚硝化、硝化系统破坏、硝化系统恢复、完全硝化五个过程中,氨氮、硝酸盐氮和亚硝酸盐氮的转化规律及游离氨毒性作用对短程硝化过程的影响.试验结果表明:反应器启动初期出现了短暂亚硝化,平均亚硝化率为79%;在进水氨氮浓度增加到300 mg/L时,系统再次实现了亚硝化,平均亚硝化率达81%,但由于游离氨浓度的影响使得系统硝化能力受到严重影响,系统氨氮去除率降低至22%;系统恢复后,亚硝化现象不明显.反应器内游离氨浓度随进水氨氮浓度升高而增加至8 mg/L时,系统内硝化细菌和亚硝化细菌活性均受到抑制.通过提高进水氨氮浓度来实现系统短程脱氮过程稳定运行的可逆性较差.  相似文献   

10.
短程硝化最优曝气时间控制与硝化种群调控   总被引:3,自引:0,他引:3  
为确定实现短程硝化的最优曝气时间,采用3个平行的序批式间歇反应器(SBR)处理生活污水,在pH为7.9~8.0时,"氨谷"出现前t/2、t/4、t/8(t为曝气时间)停止曝气,实现短程硝化.运行145 d后,系统亚硝态氮积累率分别提高到50%、65%、90%.荧光原位杂交技术(FISH)定量分析表明,反应器中氨氧化菌(AOB)的比例都有不同程度提高,3#SBR最为显著,AOB、亚硝酸盐氧化菌(NOB)占全菌的比例分别为3.89%、0.27%,AOB为硝化菌群中的优势菌.最优曝气时间控制协同游离氨(FA)抑制作用可能是快速实现和维持短程硝化的主要因素.  相似文献   

11.
采用"两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)工艺"对城市生活晚期垃圾渗滤液进行了深度处理.运行模式如下:首先在一级UASB(UASB1)中反硝化,UASBI出水中的亚硝态氮和硝态氮利用残余COD在二级UASB(UASB2)中被进一步去除,在A/O反应器中利用残余COD进行反硝化以及将NH4+-N硝化,在SBR中去除硝化产生的亚硝态氮、硝态氮.试验中首先采用原渗滤液进入处理系统(20d),然后采用原渗滤液与生活污水1∶1混合进入系统实现和维持稳定的短程硝化(60d),最后采用原渗滤液与A/O反应器出水1:1混合进入系统实现和维持稳定的短程硝化(60d).140d的试验结果表明:原渗滤液的总氮浓度为2 300 mg·L-1,氨氮浓度在2 000mg·L-1左右时,通过将原渗滤液与生活污水或A/O反应器出水1:1混合,可以在A/O反应器中实现稳定的短程硝化,其中亚硝态氮积累率为70%~88%.后续的SBR工艺,可彻底去除产生的亚硝态氮和硝态氮.最终出水的氨氮浓度不到2 mg·L-1,总氮浓度为18~20mg·L-1,系统氨氮和总氮去除率分别为99.7%和98%.  相似文献   

12.
在SBR反应器中利用游离氨(freeammonia,FA)、游离亚硝酸(freenitrousacid,FNA)对NOB(nitriteoxidizingbacteria,NOB)选择性抑制并耦合实时控制策略处理晚期垃圾渗滤液,成功实现持久稳定的短程生物脱氮,并研究了不同碳氮比及初始PH值对短程生物脱氮的影响。结果表明:通过FA和FNA对NOB的选择性抑制,在线检测反应中PH、DO和ORP数值,利用出现的“氨谷”、“ORP平台”“亚硝酸盐膝”等特征点作为运行操作控制时间点,准确得知反应进程,及时开始下一步操作,获得稳定短程生物脱氮。进水NH4+-N浓度为108~177.3mg/L(平均值为138.7mg/L)时,亚硝积累率一直稳定达90%左右,乙酸钠为碳源时最佳C、N质量比为3,相对于混合液悬浮固体浓度的反硝化速率的平均值达到19.8mg·g-1·h-1NOx--N,出水NH3+-N、NO2--N、NO3--N、TN分别小于6、2、1和30mg/L;初始PH值为8.5时,反硝化速率最大,pH介于7.5~8.5间,反硝化速率差异小于7.3%.  相似文献   

13.
亚硝酸型硝化在生物陶粒反应器中的实现   总被引:2,自引:0,他引:2  
为确定低氨氮污水处理过程中的亚硝酸型硝化的特性,采用生物陶粒反应器对其亚硝化效果和稳定性进行研究.试验结果表明,在水温20~25℃,水力负荷0.6 m3/(m2.h),气水比(3~5)∶1,进水COD负荷106~316 mg/L,氨氮负荷42.78~73.62 mg/L的条件下,反应器对氨氮的平均去除率可达到81.32%,且亚硝酸氮积累率基本稳定地保持在91%~99%.结合反应器中氮元素沿程变化分析及反应器内生物膜中微生物的计数结果表明,通过控制低溶解氧,实现了在常温条件下稳定的亚硝酸盐积累.  相似文献   

14.
CAST工艺处理低C/N废水中DO对NO2-积累的影响   总被引:7,自引:0,他引:7  
研究了有效容积为72 L的循环式活性污泥法反应器在不同溶解氧浓度下,处理低碳氮比生活污水时,去除氨氮过程中亚硝酸盐积累的情况.选取5个DO浓度水平进行试验,结果表明,在低DO浓度下有效去除氨氮的同时,实现了长期稳定的亚硝酸盐积累,并且无污泥膨胀发生,当DO在0.5 mg/L时,系统内亚硝化率(NO2-/NOx-)可达80%以上,氨氮去除率>90%,SVI在109 mL/g左右;当DO<0.5 mg/L时,氨氮去除率下降;当DO>1 mg/L时,硝化反应较彻底,但硝化过程向全程硝化转化.  相似文献   

15.
低基质质量浓度条件下ANAMMOX生物滤池脱氮效果研究   总被引:2,自引:0,他引:2  
研究了在低基质质量浓度条件下ANAMMOX生物滤池的脱氮效果.试验结果显示,NH_4~+-N的质量浓度在10~25 mg/L时,厌氧氨氧化滤池具有很高的基质去除率,NH_4~+-N的平均去除率为93.07%,NO_2~--N的平均去除率为82.23%,NO_2~--N与NH_4~+-N适宜的配比值为1.34,生物滤池脱氮高效段的滤池深度为0~60 cm.  相似文献   

16.
采用升流式厌氧污泥床-缺氧/好氧(UASB-A/O)生化系统处理城市垃圾渗滤液,考察系统除有机物脱氮效能及低温条件下A/O的硝化特性.623 d试验结果表明:通过UASB反应器内厌氧菌的产甲烷作用和异养菌的反硝化作用,耦合A/O系统内的缺氧反硝化和好氧生物降解机制,实现了渗滤液内有机物和氮同步深度去除.在进水渗滤液内化学需氧量质量浓度ρ(COD)为1 237~13 813 mg/L,平均值为(5 640±2 567)mg/L,UASB-A/O系统出水ρ(COD)为280~1 257 mg/L,平均值为(546±285)mg/L.在进水渗滤液内氨氮质量浓度ρ(NH_4~+-N)为148~2414 mg/L,平均值为(1 381±634)mg/L,UASB-A/O系统出水ρ(NH_4~+-N)均低于50 mg/L.整个实验过程中,A/O反应器克服了季节性温度变化的不利影响,始终维持了高效的生物硝化和反硝化.即使在冬季低于15℃温度条件下,A/O系统内的生物脱氮效率仍然维持在90%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号