首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
半短程硝化-厌氧氨氧化处理污泥消化液的脱氮研究   总被引:6,自引:0,他引:6  
采用实验室规模的半短程硝化-厌氧氨氧化联合工艺,研究了对高氨氮、低ρ(C)/ρ(N)污泥消化液的处理能力.结果表明,在A/O反应器中,短程硝化在温度9~20℃、平均ρDO=5.4 mg/L、SRT值为30 d左右时,进水氨氮负荷0.64 kg/(m3.d)的条件下,经过29 d得以实现,通过控制游离氨ρFA>4 mg/L时,此后,从30—96 d,出水亚硝氮累积率维持在70%左右;短程硝化实现之后,进而实现了半短程硝化,出水氨氮与亚硝氮浓度比维持在1∶1.32左右;采用UASB反应器,接种由好氧颗粒污泥、厌氧颗粒污泥、氧化沟活性污泥及短程硝化活性污泥组成的混合污泥,在避光、厌氧、(30±0.2)℃、pH=7.3~7.9条件下,以污泥消化液经短程硝化处理后的出水为进水,初期进水氨氮、亚硝氮容积负荷分别为0.07、0.10kg/(m3.d),经过24d运行,氨氮和亚硝氮开始出现同步去除现象,195 d时总氮去除负荷达1.03 kg/(m3.d);待半短程硝化运行稳定和厌氧氨氧化反应成功启动后,将二者联立并运行了105 d,最终总氮去除率达到70%.  相似文献   

2.
采用SBR工艺以水产品加工废水为研究对象,控制进水游离氨(FA)浓度为4.61 mg/L,研究高游离氨条件下短程硝化反硝化过程,对比试验结果表明:1号反应器只控制进水游离氨浓度,在运行70 d以后,转变为全程硝化,说明单一因素控制短程硝化反硝化并不稳定;2号反应器高进水游离氨条件下,控制DO为1~2 mg/L和进水pH为8.4±0.1,亚硝酸盐积累率稳定在92%以上,现已运行130 d以上,短程硝化反硝化运行稳定,表明通过非单一因素控制可实现短程硝化反硝化稳定运行.  相似文献   

3.
控制pH实现短程硝化反硝化生物脱氮技术   总被引:20,自引:0,他引:20  
采用序批式活性污泥法,在温度为28±1℃的条件下,通过控制反应器内初始pH为7.8~8.7开发了一种新型短程硝化生物脱氮工艺.试验结果表明:经过25 d的运行,曝气结束时出水中主要以亚硝酸盐为主,硝酸盐氮在4 mg/L以下,亚硝酸盐累积率达90%以上;在整个硝化期间游离氨(FA)质量浓度都在0.52~4.72 mg/L,均在抑制硝酸菌活性的阈值范围内.因此,控制pH实现短程硝化反硝化生物脱氮工艺的机理是利用反应体系内的高pH和高游离氨浓度对硝酸菌产生抑制,从而在硝化过程中产生亚硝酸盐积累.  相似文献   

4.
纳米铜对自养脱氮亚硝化工艺的短期及长期影响   总被引:1,自引:0,他引:1  
为考察纳米铜对自养脱氮亚硝化工艺的影响,在SBR反应器内分别进行短期影响实验(8 h)及长期影响实验(20 d),研究氨氮氧化速率、氮素转化规律及污泥性能的变化规律.短期实验结果表明,低质量浓度的纳米铜(≤1 mg/L)对亚硝化有促进作用,纳米铜质量浓度在3~30 mg/L内严重抑制自养脱氮亚硝化,氨氮氧化速率降低率为21.9%~44.9%.纳米铜为50 mg/L时,由于质量浓度过高导致纳米颗粒团簇,降低了真正作用于细胞的量,亚硝化活性得到强化.长期实验结果表明,长期暴露在低质量浓度(1 mg/L)的纳米铜环境中,氨氮氧化速率受到严重抑制,氨氮去除率从90%降低为44.8%,氨氧化细菌比亚硝酸盐氧化细菌对纳米铜更加敏感.在长期作用后,污泥中的铜含量增加,胞外聚合物含量增加,解除纳米铜抑制后,两者均降低.纳米铜对自养脱氮亚硝化工艺的微生物活性、脱氮能力、污泥性能均具有较大的影响.  相似文献   

5.
目的 解决对短程硝化过程影响因素pH值研究不充分及短程硝化过程中氮的缺失的问题.方法 在SBR反应器中用传统活性污泥作为种泥驯化污泥,以模拟生活污水为处理对象进行动态实验,考察pH值对系统短程硝化反硝化的影响及系统运行周期内总氮缺失原因.结果 pH=8.5,6 h的氨氮转化速率为8.9 mg/(L·h),亚硝态氮积累率高达93%;亚硝酸盐氮积累率随反应时间逐渐降低,pH越低,下降越多,pH=7.1时,从2 h的80%下降到6 h的75%;进水pH值越高,反硝化2 h时总氮的去除效率越高,pH=8.5时,系统总氮的降解速率达到5.6 mg/(L·h);短程硝化过程中存在氮的缺失现象.结论 进水pH越高,氨氮降解速率、亚硝态氮积累率和总氮去除率越高,系统周期中氮的缺失主要是同步硝化反硝化作用的结果.  相似文献   

6.
为了解决垃圾渗滤液在无外加碳源的条件下难以实现高效生物脱氮的问题,采用中试规模的A/O-MBR反应器,通过实现短程硝化反硝化去除垃圾渗滤液中的高浓度有机物和氮化物,并考察反应器系统对水质变化的适应能力以及不同进水碳氮比时的去除效果.实验结果表明:在进水氨氮质量浓度为1 500 mg/L、碳氮比为2∶1、水力停留时间(HRT)为4.21 d的条件下,COD和TN去除率均达到80%以上,说明系统实现了低碳氮比垃圾渗滤液高效生物脱氮.  相似文献   

7.
碱度对常低温处理生活污水亚硝化的影响   总被引:1,自引:1,他引:0  
为探究碱度对亚硝化过程的影响及通过碱度控制亚硝化出水比例的可行性,在序批式反应器(SBR)内快速启动亚硝化后考察不同进水碱度和氨氮比下的氨氮转化率、氨氮氧化速率及微生物活性.结果表明,硝化污泥经高氨氮预驯化可以实现亚硝化的快速启动,亚氮积累率维持在96%以上.碱度不足时,氨氮转化率与进水碱度和氨氮比成线性关系.周期试验表明,碱度可以指示亚氮质量浓度,碱度小于50 mg/L将导致氨氮氧化停止,比无机碳源质量摩尔浓度小于3.0 mmol·g-1将导致微生物数量及活性降低.实际运行中,可以通过碱度有效控制出水亚硝化比例.  相似文献   

8.
研究了好氧曝气的序批式生物反应器(SBR)处理氨氮废水过程中,亚硝化的快速启动以及亚硝化污泥颗粒化过程.SBR反应器在室温下运行,由4个电子计时器控制进水、曝气、沉降、排水的交替时间.结果表明:SBR反应器在沉淀时间2 min、进水氨氮质量浓度300 mg/L及表面气速1.3 cm/s的条件下运行6 d后,氨氮去除率及...  相似文献   

9.
晚期垃圾渗滤液实现短程硝化影响因素分析   总被引:6,自引:1,他引:6  
利用SBR反应器,探讨了溶解氧(DO)、温度和pH值对晚期垃圾渗滤液实现短程硝化的影响.结果表明:DO质量浓度为0.75 mg/L左右时,短程硝化效率较高,大于该值时硝化类型有向全程硝化转变的趋势,低于该值时最大氨氧化速率下降较大;当DO质量浓度保持在0.75 mg/L左右时,降低温度和pH值,最大氨氧化速率下降,但亚硝氮积累率仍保持在较高水平.低溶解氧情况下,由于DO的抑制作用,硝酸菌没有表现出较亚硝酸菌更适应较低温度或pH值环境的特性,DO是实现晚期垃圾渗滤液短程硝化的控制因素.当DO为0.75 mg/L左右,pH值为6.5~8.0,温度为25~27℃时,可以达到96%以上的氨氮去除率及98%以上的亚硝氮积累率,在此条件下最大氨氧化速率为0.097~0.12 g/(gVss.d).  相似文献   

10.
低氧MBR中有机物对脱氮过程的影响   总被引:3,自引:0,他引:3  
研究了低氧膜生物反应器(MBR)中有机物对脱氮过程的影响.在进水COD为360,220,140mg/L情况下,生物反应器系统的总氮去除率分别为89%,72%,22%,可以看出有机物质量浓度的降低不利于同步反硝化脱氮;对异养菌的活性产生危害,但却利于硝化菌.这削弱了有机物对硝化作用的抑制影响,使系统中活性污泥具有硝化过程和氨氮同化过程同步进行的特性,在理论上有利于提高低氧脱氮的效率和降低系统的污泥产率.  相似文献   

11.
亚硝酸型硝化在生物陶粒反应器中的实现   总被引:2,自引:0,他引:2  
为确定低氨氮污水处理过程中的亚硝酸型硝化的特性,采用生物陶粒反应器对其亚硝化效果和稳定性进行研究.试验结果表明,在水温20~25℃,水力负荷0.6 m3/(m2.h),气水比(3~5)∶1,进水COD负荷106~316 mg/L,氨氮负荷42.78~73.62 mg/L的条件下,反应器对氨氮的平均去除率可达到81.32%,且亚硝酸氮积累率基本稳定地保持在91%~99%.结合反应器中氮元素沿程变化分析及反应器内生物膜中微生物的计数结果表明,通过控制低溶解氧,实现了在常温条件下稳定的亚硝酸盐积累.  相似文献   

12.
采用MUCT工艺处理低ρ(C)/ρ(N)比实际城市生活污水,研究在短程硝化稳定运行的基础上实现亚硝酸型同步硝化反硝化(simultaneous nitrification and denitrification,SND).反应器在(28±2)℃下运行177 d,试验结果表明:通过控制溶解氧(DO)质量浓度为0.3~0.6 mg/L、水力停留时间(HRT)为6 h实现了短程硝化,亚硝酸盐积累率(nitrite accumulation rate,NAR)达到90%以上,短程硝化反硝化稳定运行118 d.在短程硝化的基础上,好氧区低氧运行实现了亚硝酸型SND,通过亚硝酸型SND途径的总氮去除率平均33%,最高达到56%.亚硝酸型SND途径下氨氮、总氮、磷的去除率明显提高,无外加碳源时分别达到99%、83%和96%.因此,MUCT工艺实现亚硝酸型SND是低碳源污水处理的一种有效的运行方式,能充分利用原水中的有机碳源,总氮去除率的提高和碳源的节省保证了磷的去除效果.  相似文献   

13.
利用序批式活性污泥反应器(sequencing batch reactor,SBR)研究了NaCl盐度、水力停留时间(hydraulic retention time,HRT)和进水负荷对短程硝化反硝化的影响.结果表明,在pH、温度和溶解氧(dissolved oxygen,DO)质量浓度分别为7.5~8.5、30~35℃和0.5~1 mg/L的条件下,当NaCl盐度、进水化学需氧量(chemical oxygen demand,COD)和氨氮质量浓度分别为5.8~25.0 g/L、450~550 mg/L和35~45 mg/L时,NO2--N累积率大于50%.在NaCl盐度14.5 g/L的条件下,当HRT为6.21 h,进水中每天1 kg悬浮物中所含的CDD和氨氮量分别为5.03×10-2和2.24×10-3kg时,亚硝酸盐累积率高于99%.高盐环境下控制HRT、有机负荷与氨氮负荷可实现短程硝化反硝化,实现短程硝化的耐盐极限为25 g/L.  相似文献   

14.
为了检验同步半硝化-厌氧氨氧化颗粒污泥工艺(simultaneous partial nitritation/Anammox with granular sludge,SPNAGS)对低氨氮污水的生物脱氮效果,开展了长期的小试试验研究.结果显示,在污水氨氮浓度从200mg/L降到20~50 mg/L时,系统中的颗粒污泥发生解体,难以保持颗粒状,且污泥颜色由原来的红棕色变为灰黄色,系统仍然保持很高的氨氮去除率(95%),但总氮的去除率却逐渐降低,最后仅有20%左右,约80%的氨氮转化为硝酸盐.因此,本研究进一步证明了该工艺在应用于低氨氮浓度污水生物脱氮时,系统内亚硝酸盐氧化细菌(nitrite-oxidizing bacteria,NOB)的控制既是关键,也是挑战.  相似文献   

15.
为研究pH对厌氧-限氧SBR同步脱氮除磷效果以及对N_2O释放的影响,接种亚硝化活性污泥,以含乙酸钠、氨氮、磷酸盐的人工配水为基质,通过逐步提高进水COD,在厌氧-限氧(DO 0.3~0.8 mg/L)SBR中成功实现了同步脱氮除磷(SNDPR).反应器稳定期间氮、磷的去除率分别达(76.1±5)%、(98.4±1)%.采用批式实验研究了不同进水pH(6.0、7.0、8.0、9.0)对脱氮除磷效果及N_2O释放的影响.结果表明,pH为9.0时除磷效果最好,除磷率达87.7%,其次为pH为6.0时,除磷率达84.0%;随着pH降低,氨氧化速率呈升高趋势,pH为6.0时单位MLSS氨氧化速率和脱氮率最大,二者分别为3.7 mg/(L·h·g)和83.9%;N_2O释放量随pH的升高而减小,pH为6.0时的释放量是9.0时的3.5倍.综上,pH为6.0时,能获得较高的脱氮除磷效率,但同时会增加N_2O的释放量.  相似文献   

16.
针对我国南方低碳氮比生活污水,开展以BAF为硝化单元的A2N工艺小试研究,针对超越污泥携带NH4+导致出水超标及二沉池出水SS偏高时TP超标问题,进一步研究增加二级BAF单元的处理效果,形成A2N/BAF工艺.结果表明:A2N段对COD、NH4+-N、TP平均去除率分别为82.0%、70.9%、90.0%;当进水NH4+-N超过40.0 mg/L时,二沉池出水NH4+-N超过10.0 mg/L;二级BAF单元能够硝化二沉池出水NH4+-N及截留SS,最终出水COD、TP、NH4+-N、NO3--N、SS平均质量浓度分别为35、0.35、1.06、8.01、7 mg/L,稳定达到一级A标准.  相似文献   

17.
CAST工艺处理低C/N废水中DO对NO2-积累的影响   总被引:7,自引:0,他引:7  
研究了有效容积为72 L的循环式活性污泥法反应器在不同溶解氧浓度下,处理低碳氮比生活污水时,去除氨氮过程中亚硝酸盐积累的情况.选取5个DO浓度水平进行试验,结果表明,在低DO浓度下有效去除氨氮的同时,实现了长期稳定的亚硝酸盐积累,并且无污泥膨胀发生,当DO在0.5 mg/L时,系统内亚硝化率(NO2-/NOx-)可达80%以上,氨氮去除率>90%,SVI在109 mL/g左右;当DO<0.5 mg/L时,氨氮去除率下降;当DO>1 mg/L时,硝化反应较彻底,但硝化过程向全程硝化转化.  相似文献   

18.
针对晚期垃圾渗滤液实现深度除碳脱氮,采用上流式厌氧污泥床(upflow anaerobic sludge blanket,UASB)-缺氧/好氧反应器(anoxic/aerobic reactor,A/O)-厌氧氨氧化反应器(anaerobic sequencing batch reactor,ASBR)组合工艺,以短程硝化-厌氧氨氧化耦合反应为依托,通过UASB实现有机物的大部分降解,在A/O中实现短程硝化,在ASBR中通过厌氧氨氧化深度脱氮.研究结果表明:当进水ρ(CODcr)、ρ(NH_4~+-N)和ρ(TN)分别为2 220 mg/L、1 400~1 450 mg/L和1 450~1 500 mg/L;最终出水分别为98、7、25 mg/L,实现了分别为95.6%、98.3%和99.5%的高去除率.故该工艺无须投加任何外碳源,最终实现化学需氧量(chemical oxygen demand,COD)、氨氮(NH_4~+-N)和总氮(total nitrogen,TN)的高效、深度去除.  相似文献   

19.
为提高反应器的氮素去除率,在市政污水处理厂进行同步厌氧氨氧化反硝化(SAD)工艺小试.以A/O除磷和亚硝化工艺处理后的生活污水为基质,启动厌氧氨氧化滤柱.反应器启动成功后,基质中投加有机碳源促进反硝化菌生长,启动SAD工艺,研究碳源质量浓度对SAD工艺的影响.由于葡萄糖对厌氧氨氧化菌抑制作用较小,成本较低,作为SAD工艺的有机碳源.结果表明:常温条件下,进水分别投加10,20和30 mg/L Glu,SAD工艺耦合效果良好,平均出水总氮质量浓度为9. 16,8. 10和6. 41 mg/L.相较于厌氧氨氧化工艺,SAD工艺出水总氮质量浓度降低了16%~42%,常温条件下取得了良好的运行效果.冬季水温为10~12℃,基质中投加30 mg/L Glu,SAD工艺稳定性受到破坏并向反硝化工艺转变,出水氨氮质量浓度由0. 5 mg/L增长至6. 2 mg/L.水温对SAD工艺有较大影响,低温条件下SAD工艺中厌氧氨氧化菌与反硝化菌的竞争中占据劣势,工艺稳定性受到破坏.将基质Glu质量浓度降低到20 mg/L,出水总氮质量浓度为6. 5~8. 5 mg/L,冬季SAD工艺出水氨氮和总氮质量浓度满足北京市地方标准的A类排放标准.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号