首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
水解-好氧工艺处理模拟染料废水试验   总被引:1,自引:0,他引:1  
采用水解-好氧工艺对自配染料废水的处理进行了试验研究.水解过程在UASB反应器内完成,好氧过程选用生物接触氧化池来完成.试验对UASB反应器的流量、水力停留时间和生物接触氧化池的曝气量及水力停留时间这四个影响因素分别进行了研究,在实验室条件下,得出了达到最佳处理效果的工艺条件:UASB反应器流量Q=50 L/h,水力停留时间t=3 h;生物接触氧化池曝气量Q=1.2 m3/h,水力停留时间t=1.5 h.  相似文献   

2.
采用水解-好氧工艺对自配染料废水的处理进行了试验研究。水解过程在UASB反应器内完成,好氧过程选用生物接触氧化池来完成。试验对UASB反应器的流量、水力停留时间和生物接触氧化池的曝气量及水力停留时间这四个影响因素分别进行了研究,在实验室条件下,得出了达到最佳处理效果的工艺条件:UASB反应器流量Q=50L/h,水力停留时间t=3h;生物接触氧化池曝气量Q=1.2m^3/h,水力停留时间t=1.5h。  相似文献   

3.
以明胶废水为研究对象,采用微好氧与厌氧水解酸化工艺进行对比处理实验,探讨了不同水力停留时间下微好氧与厌氧水解酸化对明胶废水水质改善的效果。实验结果表明,在水力停留时间达到72 h的时候,溶解氧为1.3~1.6 mg/L的微好氧反应器的COD去除率最大可达25%,溶解氧为0.3~0.5 mg/L的厌氧反应器的COD去除率最大可达22%;微好氧反应器的VFA的含量达到12 mg/L左右,厌氧反应器只有8 mg/L左右;微好氧反应器的pH值可由最初的12.5降至7.5左右,而厌氧反应器只能降至8.0左右;两个反应器对蛋白质去除效果的差别并不明显,都可以达到90%以上,但是微好氧反应器的氨氮浓度只有22 mg/L,小于厌氧反应器中的氨氮浓度,说明微氧条件有利于氨氮的扩散挥发,低浓度的氨氮对微生物的危害较小。对比得出微好氧反应器的出水水质较好,更适合明胶废水水解酸化的预处理。  相似文献   

4.
为了提高煤制气废水的厌氧处理能力,研究了实际工程中煤制气废水的外循环厌氧处理效果,并考察进水质量浓度、水力停留时间和投加甲醇对煤制气废水处理效能的影响.结果表明:煤制气废水的厌氧处理效率很低,进水COD和总酚质量浓度分别为1100mg/L和210mg/L时去除率分别为18.5%和20.3%,当进水COD质量浓度提高至2100mg/L时去除率分别为15.2%和25.5%.水力停留时间由24h延长至48h,COD和总酚去除率略有提高.投加甲醇控制COD含量为200~500mg/L,COD和总酚去除率分别提高至40.7%和35.2%.投加甲醇基质可以明显提高废水的厌氧处理效能,稀释作用或者延长水力停留时间的效果甚微.  相似文献   

5.
采用厌氧水解酸化-生物接触氧化工艺对模拟印染废水进行了正交试验研究,使COD去除率达到94%,色度去除率达到96%,出水水质达到了《纺织染整工业水污染物排放标准》(GB 4287—1992)一级排放标准.试验结果表明:COD去除率主要受进水COD浓度、A池水力停留时间的影响较大,色度去除率受到好氧池水力停留时间的显著影响.  相似文献   

6.
采用淹没式水解-好氧附着生长生物反应器(SAGB)技术对直链垸基苯磺酸钠(LAS)质量浓度高达100 mg/L 的合成洗涤剂生产废水进行处理,水解 SAGB 池的水力停留时间为4.0 h,好氧 SAGB 池水力停留时间为6.0 h.研究结果表明:水解段污泥龄较长的微生物对 LAS 的起泡组分有较强的降解作用,将 LAS 转化为易生物降解的小分子中间产物,使废水的 BOD/COD 值由0.25提高到约0.45,改善了废水的可生化性,有利于后续好氧处理.工程运行表明:合成洗涤剂废水ρ(COD_(Cr))=301~453 mg/L,ρ(LAS)=129~164 mg/L,ρ(PO_4~(3-))(以 P 计)=2.3~4.2 mg/L,采用物化预处理—水解 SAGB—好氧 SAGB 工艺处理后,出水水质达到ρ(COD_(Cr))=50~81mg/L,ρ(LAS)=2~4 mg/L,ρ(PO_4~(3-))(以 P 计)=0.1~0.3 mg/L,废水最终达标排放.  相似文献   

7.
为找出抗生素废水适合的生物处理方法,研究了水解酸化-厌氧-好氧组合工艺处理高浓度抗生素废水的试验.结果表明:采用相同体积(62 L)的升流厌氧污泥床和厌氧复合床(UBF)处理水解酸化后的抗生素废水,当COD容积负荷为6.0 kg/(m3.d)时,厌氧复合床对SS、COD、BOD5的去除率分别为75.6%、91.7%、96.1%;出水采用相同体积(64 L)的生物接触氧化反应器和周期循环活性污泥系统(CASS)进行处理,当COD容积负荷为1.6 kg/(m3.d)时,周期循环活性污泥系统对SS、COD、BOD5的去除率分别为91.6%、88.7%9、5.4%.结果表明UBF和CASS系统是抗生素废水处理中先进高效的生物反应器.  相似文献   

8.
折流板酸化反应器处理有机废水试验研究   总被引:1,自引:0,他引:1  
在厌氧折流板反应器(ABR)内设填料,利用反应器良好的分隔性能,采用好氧活性污泥接种,培养酸化菌膜,对有机废水进行预处理.研究了容积负荷、温度、水力停留时问等因素对反应器处理效率的影响,并就反应器不同隔室COD。pH的变化特点进行研究.进水COD浓度1000mg/L左右。水力停留时间3h~6h。溶解性COD去除率19.2%~26.1%.  相似文献   

9.
上流式厌氧生物滤池处理高含盐废水的试验研究   总被引:10,自引:0,他引:10  
对利用上流式厌氧生物滤池反应器(Upflow anaerobic Biofilter,UBF)处理高含盐有机废水的情况进行了试验研究.结果表明,在容积负荷4 kgCOD/(m3- d),进水氯离子浓度在3 000 mg/L,水力停留时间24 h时,COD去除效率达到85%左右.  相似文献   

10.
浙江某毛皮厂采用水解酸化+好氧活性污泥工艺处理污水,因其生化系统采用污泥大回流的运行方式,导致水解阶段的水解效果不明显,出水水质难以达标,迫切需要进行工程改造.根据该毛皮废水水质特征,采用强化厌氧-好氧活性污泥工艺,对工艺的运行参数进行优化,以便为工程改造提供重要的工艺参数.结果表明:在进水CODCr浓度不超过2 000mg/L、氨氮浓度不超过100mg/L的情况下,厌氧和好氧的水力停留时间都为1.5d,此时系统达到最优化的状态,CODCr、BOD5、氨氮和色度的去除率都稳定在92%以上,出水水质完全能达到《制革及毛皮加工工业水污染物排放标准》(GB 30486-2013)所规定的直接排放要求.  相似文献   

11.
对高浓度磷化工废水进行处理,采用一级反应槽[Ca(OH)2]/一级斜板(PAM)絮凝沉淀和二级反应槽[FeSO4+Ca(OH)2]/二级斜板(PAM)絮凝沉淀,并提供了该工艺所需构筑物和设备的选型. 经该工艺处理后的水质指标为:COD≤80 mg/L,ρ(F)(Fluorine)≤15 mg/L, ρ(P)≤20 mg/L,ρ(As)≤0.5 mg/L,ρ(SS)≤50 mg/L,6≤pH≤9,符合《磷肥工业水污染物排放标准》(GB 15580-2011). 本工艺对磷化工废水的处理具有良好的效果,能有效去除磷氟砷等杂质.  相似文献   

12.
接触氧化法处理啤酒废水的研究   总被引:4,自引:0,他引:4  
采用接触氧化法对啤酒废水进行了小试研究 .结果表明 :填料挂膜时间较长 ;当进水CODcr在 10 0 0~ 2 0 0 0mg/L ,水力停留时间为 8h ,出水CODcr在 10 0~ 2 0 0mg/L ,CODcr去除率 80 %~ 90 % ,还需进一步处理 .  相似文献   

13.
UASB反应器处理青霉素废水启动特性的研究   总被引:1,自引:0,他引:1  
采用上流式厌氧污泥床(UASB)反应器,以高浓度青霉素废水为处理对象,研究了中温条件下UASB反应器的启动、厌氧颗粒污泥特性和废水处理效果。结果表明:接种消化污泥,水温33~35℃的条件下,采用逐步提高青霉素废水进水浓度的方式,运行80d后,可实现UASB反应器的启动。进水ρ(COD)达到4 000mg/L左右,COD去除率稳定在84%以上,容积负荷为3.36kg/(m3.d)(以COD计),产气量为5.9L/d;反应器内污泥实现颗粒化,粒径约为2mm。  相似文献   

14.
以硝化菌增长的Haldane模式为基础,通过理论分析证明,完全混合式活性污泥反应器是碳氧化(COD降解)和NH3—N硝化合并处理工艺的最佳反应器,给出了曝气池NH3—N的最佳浓度(7.4mg/L).在此基础上,采用单级活性污泥法处理同时含有COD350—400mg几和NH3—N150mg/L的树脂生产废水,结果表明:当控制水力停留时间(HRT)为8h时,NH3—N的硝化率和COD去除率分别为90%和65%,将HRT延长至10h,NH3—N可完全硝化,而COD的去除率并不降低。  相似文献   

15.
曝气生物滤池深度处理印染废水的实验研究   总被引:2,自引:0,他引:2  
采用曝气生物滤池(BAF)对经生化预处理后的印染废水进行中试规模的深度处理实验研究,考察了水力负荷、进水有机负荷和滤层高度对污水化学需氧量(COD)和总磷(TP)的去除效果。结果表明:当BAF进水水力负荷为2.5 m3/(m2·h),气水比为2∶1,进水COD和TP质量浓度分别为77.7~102 mg/L和0.872~0.957 mg/L范围变化时,COD和TP平均去除率分别达到了47.9%和46.0%,出水水质满足《城镇污水处理厂污染物排放标准》(GB 18918—2002)一级A标准。  相似文献   

16.
针对浸没式厌氧膜生物反应器的膜污染控制问题,将双轴旋转膜组件应用于浸没式厌氧生物反应器,构建了新型浸没式双轴旋转厌氧膜生物反应器(SDRAnMBR),并研究了SDRAnMBR处理啤酒废水的性能。研究结果表明,该反应器对啤酒废水有着好的处理效果,有机物去除率高。在正常运行期间,进水COD在2 900~5 200mg.L-1,容积负荷为4.97~12.48 kg.m-3.d-1(以COD计)时,COD的平均去除率为95.15%。而且运行非常稳定,并有良好的抗膜污染性能等。  相似文献   

17.
高浓度印染废水电化学-厌氧-好氧处理工艺   总被引:1,自引:0,他引:1  
针对高浓度印染废水难以进行有效生物处理,探索了以电化学为预处理手段的厌氧-好氧印染废水生物处理工艺并优化了相应工艺条件.结果表明,原水COD为2000mg/L、色度0.65-0.80、联合工艺总HRT为29h时(电化学lh,UASB12h,SBR调节池8h,SBR8h),采用SBR出水部分回流的操作方式,系统出水COD稳定在100-130mg/L之间,色度低于0.02.  相似文献   

18.
缺氧/好氧/MBR处理生物发酵废水的中试研究   总被引:1,自引:0,他引:1  
构建缺氧/好氧/MBR中试系统应用于生物发酵废水回用,考察了系统的启动、驯化和运行过程.结果表明:缺氧/好氧/MBR处理厌氧(IC)出水能完全满足该公司生物发酵用水(COD〈150 mg/L,氨氮〈1.0mg/L,pH值7~8,SS〈2.0mg/L)的水质要求,且该工艺具有工程费用低、运行稳定、操作方便等优点.  相似文献   

19.
根据制药废水COD值高、含盐量高、色度深、可生化性差等特点,通过对废水进行Fenton氧化/铁炭微电解预处理后,采用水解酸化/升流式厌氧污泥床(up-flow anaerobic sludge bed,简称UASB)/序批式活性污泥法(sequencing batch reactor activated sludge,简称SBR)生物组合处理工艺对制药废水进行进一步处理研究.试验结果表明:经过Fenton氧化/铁炭微电解预处理后,COD去除率达到30%,提高了废水的可生化性;在一定的试验条件下,水解酸化有一定效果但并不理想;在优化实验条件下,UASB处理工艺对COD的去除率为30%~55%;SBR处理中,12,h和24,h周期SBR对COD的去除率分别为35%~45%和60%左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号