首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为了分析公路桥梁与车辆之间的相互作用,提出了四自由度1/2车辆模型相对于不平整桥面耦合振动分析方法.根据GB/T 7031-1986建议的公路路面功率谱密度的拟合表达式,求得了不同等级桥面的不平度值,并作为1/2车辆垂向动力学模型的输入激励,基于数值仿真分析,分别对不同等级桥面的连续梁桥进行了控制截面的挠度动力响应计算,得到了相应挠度冲击系数随桥面等级及车速变化规律.结果表明:桥梁挠度冲击系数随车速增加呈先增大后减小趋势;随着公路桥面等级变差,冲击系数呈非线性增大,桥面等级及车速是影响车辆动力作用的显著因素.  相似文献   

2.
基于车路相互作用的动态特性分析   总被引:2,自引:1,他引:1  
基于车路相互作用建立了简化的双自由度四分之一车辆振动模型,以路面不平整度为激励,描述了路面不平整度的功率谱密度,运用随机振动理论分析了不平整路面上的车辆对路面的随机动压力。实例分析表明,动载系数随着车速和路面不平整度的增加而增加,动载系数是反映随机动压力大小的重要参数。  相似文献   

3.
车辆荷载作用下混凝土箱梁桥桥面板局部振动分析   总被引:1,自引:0,他引:1  
研究车-桥耦合振动条件下,混凝土箱梁桥桥面板局部振动规律.推导车-桥耦合动力平衡方程,用板单元建立简支箱梁桥有限元模型,采用3维7自由度车辆模型,由路面功率谱密度函数模拟得到等级分别为"理想"、"好"和"差"的路面不平度函数.通过数值模拟计算桥面板不同位置的竖向位移、纵向弯矩和横向弯矩的动力放大系数(DAF).分别对车道位置、路面等级、车速和桥梁阻尼进行了参数分析.结果表明,车辆荷载作用下,桥面板不同位置的局部DAF值、同一位置由不同响应量得到的DAF值之间均存在很大差异,采用统一的DAF来计算车辆对桥面板的冲击作用不甚合理.路面不平度是影响桥面板车致振动最为重要的因素;而车速次之,且很难找到明确的函数关系用于描述车速对箱梁桥面板的局部动力放大系数的影响.  相似文献   

4.
采用周期图法和时域内的采样原理,根据路面高程随机过程的相位分布,以频域路面功率谱密度为依据,对不同等级路面不平度的时域数据进行数值模拟.针对模拟方法的准确性问题,以仿真出的路面不平度时域和原始频域数据为输入得到车辆响应功率谱密度,比较二者的差异,验证了模拟方法的可靠性.通过对国际平整度指数与功率谱密度两个不平度指标进行比较,利用模拟得到的路面不平度时域数据,推导出二者的相关关系,以路面实测不平度高程数据为基础的检验结果表明,相关关系模型可靠.  相似文献   

5.
首先根据国标GB/T 7031-2005机械振动道路路面谱测量数据报告,在MatLab中编写了随机路面激励谱仿真程序;利用拉格朗日方程建立了1/2车辆几何模型,并用Simulink对其进行了仿真;以不同等级路面和不同车速下的随机路面激励谱作为输入,分析了车辆在不同等级路面、不同车速下的车身加速度均方根值和后轮的动载均方...  相似文献   

6.
针对货车动荷载作用下路面结构力学响应及路面设计指标变化规律,应用ABAQUS有限元软件建立相应三维路面结构模型及动荷载模型进行动态模拟,并通过现场试验验证了模型的可靠性,对路表弯沉和各结构层层底应力情况进行计算,分析不同车速、平整度和路面结构参数对路面结构力学响应的影响,得到车速、平整度和路面结构参数对路面力学响应的影响规律,可以为路面结构设计和道路施工养护提供理论指导.  相似文献   

7.
桥面不平度通常被认为是影响车桥系统耦合振动的主要因素之一。根据给定的桥面不平度功率谱密度变换得到桥面不平度是一个有效、快速的途径。分别采用三角级数法和Fourier逆变换法得到各级路面的不平度及其对应的功率谱密度函数。通过比较可知:Fourier逆变换法精度较目前被广泛应用的三角级数法高。推导了四自由度车辆和桥梁的振动平衡方程,并编制了车桥耦合振动分析程序,结合Fourier逆变换法得到的桥面不平度,分析了某简支梁在考虑桥面不平度下的动力响应。研究结果表明,桥面不平度对桥梁和车辆的动力响应影响很大,车速决定着车辆对桥梁作用力和车辆受到的桥梁对其反作用力的频率,从而影响到桥梁振动。  相似文献   

8.
车辆动载荷的频域模拟计算与分析   总被引:7,自引:0,他引:7  
建立了简化的1/4车辆模型,并对车辆的动载荷特性进行分析;描述了反映路面不平度的波数功率谱密度[Sm(k)]与时间角频率谱密度[Su(ω)的关系,运用频域模拟分析方法计算了车辆动载荷的功率谱密度、均方根偏差与动载系数,并且分析了车速与路面不平度对车辆动载荷变化的影响.可为进一步的路面动力响应研究提供理论基础.  相似文献   

9.
为研究自铺设实验路面不平度等级,本文采用水准仪测量路面不同位置的高程数据进行路面不平度研究。经统计处理高程数据得到整个路面的三维高程曲面,并利用经验模态分解(empirical mode decomposition,EMD)方法处理路面不平度趋势项,获取符合路面相对等级的路面不平度数据序列,重构路面不平度,建立自回归(auto regressive,AR)模型,求解实验路面功率谱密度并分析。分析结果表明,在低频段,实验道路位移功率谱密度值较大,在高频段,实验道路位移功率谱密度值较小,实验路面的特性参数与B级路面的数值相近,整个路面属B级路面。该研究为车辆的动态响应提供了较为准确的路面不平度信息,具有一定的实际应用价值。  相似文献   

10.
为研究路面不平度对多轴重型车辆动载荷的影响,本文采用路面有理函数功率谱密度和谐波叠加法,建立了A~D级随机路面,并与多体动力学仿真软件Simpack建立的多轴载货汽车刚柔耦合的整车虚拟样机集成,创建了随机路面激励下载货汽车行驶动力学模型,并对不同路面不平度、不同车速下汽车各轴车轮动载系数进行仿真计算。仿真结果表明,路面等级在A~D级、车辆行驶速度为50~80km/h时,前轴车轮动载系数的变化范围为1.889~2.462,前中轴车轮动载系数的变化范围为1.880~1.985,中后轴车轮动载系数的变化范围为1.888~2.566,后轴车轮动载系数的变化范围为1.888~2.621。该研究为分析路面损伤及车辆结构件设计提供了参考依据。  相似文献   

11.
车桥耦合系统桥头跳车动力效应分析   总被引:2,自引:0,他引:2  
借鉴了桥面平整度的概率模型,提出了桥头跳车激励下的计算模型,并建立了车桥耦合振动方程。通过对30m简支梁桥在桥头跳车的影响下进行了动力效应计算,分析了桥头跳车激励对车桥耦合系统的影响,分别讨论了桥梁结构的动力效应随行车速度、桥头高差的变化而呈现的变化规律。  相似文献   

12.
车桥耦合系统桥面破损动力效应分析   总被引:3,自引:1,他引:2  
借鉴了路面平整度的概率模型,提出了桥面破损激励下的计算模型,并建立了车桥耦合振动方程。通过对16 m简支梁桥在桥面破损的影响下进行了动力效应计算,分析了桥面破损激励对车桥耦合系统的影响,讨论了公路桥梁结构的动力效应随车辆行驶速度、桥面破损位置的变化而呈现的变化规律。  相似文献   

13.
桥面不平度对大跨度斜拉桥车辆振动的影响分析   总被引:2,自引:0,他引:2  
将随机桥面平整度描述为零均值的平稳高斯随机过程,建立了大跨度斜拉桥空间有限元模型,考虑结构的初始应力效应和几何非线性因素,提出了一种斜拉桥车桥振动分析的简化方法.结合工程实例分析了桥面平整度对斜拉桥车辆振动的影响,为大跨度斜拉桥的科学管理和维护提供参考.  相似文献   

14.
大跨异形钢管混凝土拱桥车载冲击效应分析   总被引:3,自引:0,他引:3  
大跨度异形钢管混凝土拱桥的复杂造型使其结构动力特性极为特殊,车辆激励引起的桥梁振动十分复杂.为研究该类桥梁车辆冲击效应的特点和规律,以在建的长春市伊通河大桥为对象,应用自编的车桥耦合振动分析程序,对该桥进行了车桥耦合振动响应分析.从理论上分析了路面粗糙度、车速、结构阻尼对桥梁主梁、拱肋挠度和吊杆索力冲击效应的影响.结果表明:路面不平度对多拱肋异型拱桥振动响应的影响十分显著,维持路面平整可有效降低冲击系数;行车速度对冲击效应的影响与发生的卓越振动振型密切相关,并不一直随车速成正比增大;结构阻尼值在规范给定范围内变动时,对冲击系数影响不明显,设计中可偏安全地取阻尼比为0.5%.研究给出了该桥各主要构件的设计冲击系数取值的参考范围.  相似文献   

15.
考虑桥面板振动的桥梁结构低频噪声分析   总被引:1,自引:0,他引:1       下载免费PDF全文
桥梁结构在车辆的动力作用下,将产生振动并辐射低频噪声,这种低频噪声对人体健康有很大的危害。针对这一问题,提出了一种基于桥面板振动的桥梁低频噪声预测方法,主要包括考虑桥面板振动的车桥耦合振动、桥面板辐射声波以及空气波传播分析。以一座辐射低频噪声较强的钢桥为对象,分别采用基于桥面板振动和基于梁格振动的方法计算了结构振动与噪声,并与实测值进行了对比。结果表明,基于桥面板振动的预测更为准确。在此基础上,探讨了降低桥梁低频噪声的方法,结果表明,降低桥面粗糙度可以降低桥梁低频噪声,但当达到ISO极好路面标准后,进一步降低粗糙度产生的效果不明显;对端横梁用混凝土进行加强是一种简便有效的降低桥梁低频噪声的方法。  相似文献   

16.
钢管混凝土系杆拱桥车桥耦合振动分析   总被引:1,自引:0,他引:1  
为了研究钢管混凝土系杆拱桥在车辆荷载作用下的动力冲击效应,综合采用包括空间梁、板和杆单元的桥梁结构有限元模型和三维7自由度车辆模型,通过数值模拟车、桥动力相互作用,计算得到桥梁的位移、内力响应及对应动力放大系数,研究桥梁不同构件所受到的动力冲击作用及主要影响因素,分析桥梁不同位置加速度响应的频谱特征.结果表明,桥梁局部构件的动力冲击系数常超过规范取值,且路面不平度是最主要的影响因素;长、短吊杆的动力冲击系数差异很大,短吊杆的受力和抗疲劳性能远低于长吊杆.  相似文献   

17.
The vibration caused by terrible road excitation affects the ride quality and safety of track vehicles.The vibration control of suspension systems is a very important factor for modern track vehicles.A fuzzy logic control for suspension system of a track vehicle is presented.A mechanical model and a system of differential equations of motion taking account of the mass of loading wheel are established.Then the fuzzy logic control is applied to control the vibration of suspension system of track vehicles for sine signal and random road surfaces.Numerical simulation shows that the maximum acceleration of suspension system can be reduced to 44% of the original value for sine signal road surface,and the mean square root of acceleration of suspension system can be reduced to 21% for random road surface.Therefore,the proposed fuzzy logic control is an efficient method for the suspension systems of track vehicles.  相似文献   

18.
车流作用下简支桥梁的随机振动分析   总被引:5,自引:0,他引:5  
考虑到过桥汽车的重量具有随机性,给出了车流对桥梁作用的随机分布力模型,导出了相应的空间-时间相关函数及空间相关功率谱密度函数。针对简支型桥梁,推导出随机车流作用下桥梁挠度响应的数字特征函数。  相似文献   

19.
动态称重系统作为桥梁结构健康系统的重要组成部分之一,能提供丰富的车辆荷载监测数据,在此基础上建立能反映实际交通状况的车辆荷载模型,对桥梁结构的安全评估、车致疲劳分析等具有重要意义。提出一种能考虑区分车辆运行状态的随机车流模拟方法和流程,在车辆荷载统计分析过程中通过各时段的车流量密集程度区分车辆运行状态,针对不同运行状态,引入单峰和多峰概率分布模型,对车重、车速、车间距等车辆荷载统计参数进行概率拟合,通过K-S检验获得车辆荷载参数的最优概率分布;通过Monte Carlo抽样模拟随机车流,进而分解为随机加载流;基于某实际桥梁的车辆荷载监测数据,对车辆荷载模拟方法的合理性进行验证。结果表明:采用区分车辆运行状态模拟的随机车流对桥梁结构进行加载,获得的钢箱梁跨中底板应力幅值和应力循环次数与实际车流加载结果接近。相比之下,如果不考虑区分车辆运行状态,得到的应力幅值和循环次数都明显小于实际车流的加载结果,这对于桥梁结构的车致疲劳分析偏于危险。  相似文献   

20.
为了给桥梁验算的设计荷载提供参考,基于宜泸高速WIM实测数据,分析随机车流参数尤其是轴重相关性. 应用MATLAB平台编制随机车流模拟程序,采用影响线法分析随机车流的荷载效应,探讨考虑轴重相关与不考虑时荷载效应的差别. 研究结果表明:轴重具有多峰分布的特点,轴重之间具有较强的相关性,当模拟随机车流时,若不考虑车辆参数的相关性,则会造成较大误差;采用非参数核密度估计-Copula方法,利用t-Copula函数作为连接函数的轴重联合分布函数,可以较准确地描述车辆轴重联合分布;考虑轴重相关情况下的荷载效应代表值比不考虑时高约45%,与实测车流荷载效应代表值更加接近;各车道随机车流对简支梁桥的荷载效应代表值差别不大,但均已超过现行规范公路-I级车道荷载的荷载效应,效应比最大值为1.34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号