首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2021,47(18):25680-25688
LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion battery exhibits high capacity, but it suffers from interfacial side reactions and structural/thermodynamic instability, which leads to capacity reduction and safety problems. Cubic brick (Ni0.8Co0.1Mn0.1)C2O4·2H2O particles with micron size are synthesized by co-precipitation method. The oxalic precursor is sintered with lithium hydroxide to obtain cubic mono-dispersion LiNi0.8Co0.1Mn0.1O2 micrometer particles. Structural stability, cycling performance, rate capability and compacting density of the cubic mono-dispersion material are investigated. Conventional spherical and irregular mono-dispersion LiNi0.8Co0.1Mn0.1O2 are also prepared for comparison. The results reveal that the cubic mono-dispersion LiNi0.8Co0.1Mn0.1O2 dramatically enhances the structural stability and cycling performance at a little cost of capacity and rate capability.  相似文献   

2.
Nanocrystalline materials of Ni0.8Co0.1Mn0.1(OH)2 are successfully synthesized by fast co-precipitation method. The crystalline structure and morphology of the precursors and LiNi0.8Co0.1Mn0.1O2 materials are characterized by XRD, SEM and Rietveld refinement analyses. It is found that the nanocrystalline phase and low crystallinity of Ni0.8Co0.1Mn0.1(OH)2 could help achieve its uniform mixing with lithium source, and further attribute to highly ordered layered LiNi0.8Co0.1Mn0.1O2 with low cation mixing degree. Electrochemical studies confirm that the LiNi0.8Co0.1Mn0.1O2 exhibits a good electrochemical property with initial discharge specific capacity of 192.4 mAh g− 1 at a current density of 18 mA g− 1, and the capacity retention after 40 cycles is 91.56%. This method is a simple and effective method to synthesize cathode material.  相似文献   

3.
Nickel-rich layered materials are prospective cathode materials for use in lithium-ion batteries due to their higher capacity and lower cost relative to LiCoO2. In this work, spherical Ni0.8Co0.1Mn0.1(OH)2 precursors are successfully synthesized through a co-precipitation method. The synthetic conditions of the precursors - including the pH, stirring speed, molar ratio of NH4OH to transition metals and reaction temperature - are investigated in detail, and their variations have significant effects on the morphology, microstructure and tap-density of the prepared Ni0.8Co0.1Mn0.1 (OH)2 precursors. LiNi0.8Co0.1Mn0.1O2 is then prepared from these precursors through a reaction with 5% excess LiOH· H2O at various temperatures. The crystal structure, morphology and electrochemical properties of the Ni0.8Co0.1Mn0.1 (OH)2 precursors and LiNi0.8Co0.1Mn0.1O2 were investigated. In the voltage range from 3.0 to 4.3 V, LiNi0.8Co0.1Mn0.1O2 exhibits an initial discharge capacity of 193.0mAh g-1 at a 0.1 C-rate. The cathode delivers an initial capacity of 170.4 mAh g-1 at a 1 C-rate, and it retains 90.4% of its capacity after 100 cycles.  相似文献   

4.
《Ceramics International》2023,49(8):12138-12143
We report a simple, easy way using WO3 to build a conductive protective coating layer on the surface of LiNi0.8Co0.1Mn0.1O2 cathode. The WO3 coating layer can block direct contact between the LiNi0.8Co0.1Mn0.1O2 and electrolyte, resulting in suppress the transition metal dissolution and interfacial unwanted reaction on the particle surface. Moreover, WO3 coating layer allows for the smooth and rapid lithium and electron kinetics. The WO3 coating improves the electrochemical performance, especially, this way significantly enhances the rate capability of 166.2 mAh g−1 at 6.0C and cyclability of 85.8% after 100 cycles. Therefore, WO3 coating provides a new breakthrough to improve the structural stability and suppress the resistance for superior electrochemical performances of lithium ion batteries.  相似文献   

5.
In this study, we have successfully coated the CeO2 nanoparticles (CeONPs) layer onto the surface of the Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials by a wet chemical method, which can effectively improve the structural stability of electrode. The X-ray powder diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS) are used to determine the structure, morphology, elemental composition and electronic state of pristine and surface modified LiNi0.7Co0.2Mn0.1O2. The electrochemical testing indicates that the 0.3?mol% CeO2-coated LiNi0.7Co0.2Mn0.1O2 demonstrates excellent cycling capability and rate performance, the discharge specific capacity is 161.7?mA?h?g?1 with the capacity retention of 86.42% after 100 cycles at a current rate of 0.5?C, compared to 135.7?mA?h?g?1 and 70.64% for bare LiNi0.7Co0.2Mn0.1O2, respectively. Even at 5?C, the discharge specific capacity is still up to 137.1?mA?h?g?1 with the capacity retention of 69.0%, while the NCM only delivers 95.5?mA?h?g?1 with the capacity retention of 46.6%. The outstanding electrochemical performance is assigned to the excellent oxidation capacity of CeO2 which can oxidize Ni2+ to Ni3+ and Mn3+ to Mn4+ with the result that suppress the occurrence of Li+/Ni2+ mixing and phase transmission. Furthermore, CeO2 coating layer can protect the structure to avoid the occurrence of side reaction. The CeO2-coated composite with enhanced structural stability, cycling capability and rate performance is a promising cathode material candidate for lithium-ion battery.  相似文献   

6.
《Ceramics International》2019,45(1):674-680
Nickel-rich lithium material LiNixCoyMn1-x-yO2(x > 0.6) becomes a new research focus for the next-generation lithium-ion batteries owing to their high operating voltage and high reversible capacity. However, the rate performance and cycling stability of these cathode materials are not satisfactory. Inspired by the characteristics of Y2O3 production, a new cathode material with ultrathin-Y2O3 coating was introduced to improve the electrochemical performance and storage properties of LiNi0.8Co0.1Mn0.1O2 for the first time. XRD, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS) and XPS were used to mirror the crystal and surface of LiNi0.8Co0.1Mn0.1O2 particles, results i that a uniform interface formed on as-prepared material. The impacts on the electrochemical properties with or without Y2O3 coating are discussed in detail. Notably, galvanostatic discharge-charge tests appear that Y2O3-coated sample especially 3% coating displayed a better capacity retention rate of 91.45% after 100 cycles than the bare one of 85.07%.  相似文献   

7.
《Ceramics International》2022,48(12):17279-17288
Layered high-nickel LiNi0.8Co0.1Mn0.1O2 is a promising candidate of the next generation cathode materials for lithium-ion batteries. However, severe cycling instability and fast capacity drop induced by anisotropic structured change restrict its wide application. To address these defects, the structure design of cathodes is conducted. Herein, a hierarchical layered LiNi0.8Co0.1Mn0.1O2 cathode consisting of orderly stacking hexagonal nanosheets with exposed active {104} facets is successfully synthesized by an improved co-precipitation process and followed with a high temperature lithiation reaction. Benefiting from this unique texture, exposed active {104} facets with lower surface energy supply 3D barrier-free Li+ ion diffusion channels, significantly improving the efficiency of the Li+ diffusion. Moreover, the consistent arrangement of nanosheets in the manner of the {001} facets close attachment is beneficial to alleviate the stress caused by the anisotropic structured change. Thus, this cathode material presents both superior reversible capability (203.8 mAh g?1 at 0.1C, 184.5 mAh g?1 at 1 C, 173.0 mAh g?1 at 5 C and 161.3 mAh g?1 at 10 C) and stable cycling performance (capacity retention of 89.3% after 100 cycles at 1 C, 55.3% after 300 cycles at 5 C and 59.6% after 300 cycles at 10 C).  相似文献   

8.
A series of LiNi1/3Co1/3Mn1/3O2/polytriphenylamine composites were successfully synthesized by ultrasound dispersion method. LiNi1/3Co1/3Mn1/3O2/polytriphenylamine (5.0?wt%) composite with small and homogeneous particle size exhibited excellent electrochemical performance, which delivered an initial discharge capacity of 223.7?mAh g?1 with a capacity retention of 84.39% after 100 cycles in the voltage range of 2.5–4.5?V and at a current density of 0.2C. Moreover, an excellent specific discharge capacity of 127.3?mAh g?1 at a current density 5C indicates a superior rate performance of the LiNi1/3Co1/3Mn1/3O2/polytriphenylamine (5.0?wt%) composite. The good electrochemical performances of the composite can be attributed to the introduction of polytriphenylamine, which increased electrical conductivity, decreased charge transfer resistance and increased Li+ ion diffusion ability. These noteworthy results demonstrated that LiNi1/3Co1/3Mn1/3O2/polytriphenylamine composites might be potential cathode materials for lithium ion batteries.  相似文献   

9.
Spherical LiNi1/3Co1/3Mn1/3O2 cathode particles were resynthesized by a carbonate co-precipitation method using spent lithium-ion batteries (LIBs) as a raw material. The physical characteristics of the Ni1/3Co1/3Mn1/3CO3 precursor, the (Ni1/3Co1/3Mn1/3)3O4 intermediate, and the regenerated LiNi1/3Co1/3Mn1/3O2 cathode material were investigated by laser particle-size analysis, scanning electron microscopy–energy-dispersive spectroscopy (SEM-EDS), thermogravimetry–differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), inductively coupled plasma–atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the regenerated LiNi1/3Co1/3Mn1/3O2 was studied by continuous charge–discharge cycling and cyclic voltammetry. The results indicate that the regenerated Ni1/3Co1/3Mn1/3CO3 precursor comprises uniform spherical particles with a narrow particle-size distribution. The regenerated LiNi1/3Co1/3Mn1/3O2 comprises spherical particles similar to those of the Ni1/3Co1/3Mn1/3CO3 precursor, but with a narrower particle-size distribution. Moreover, it has a well-ordered layered structure and a low degree of cation mixing. The regenerated LiNi1/3Co1/3Mn1/3O2 shows an initial discharge capacity of 163.5 mA h g?1 at 0.1 C, between 2.7 and 4.3 V; the discharge capacity at 1 C is 135.1 mA h g?1, and the capacity retention ratio is 94.1% after 50 cycles. Even at the high rate of 5 C, LiNi1/3Co1/3Mn1/3O2 delivers the high capacity of 112.6 mA h g?1. These results demonstrate that the electrochemical performance of the regenerated LiNi1/3Co1/3Mn1/3O2 is comparable to that of a cathode synthesized from fresh materials by carbonate co-precipitation.  相似文献   

10.
Fine-sized LiNi0.8Co0.15Mn0.05O2 cathode particles with high discharge capacities and good cycle properties were prepared by spray pyrolysis from the polymeric precursor solutions. The cathode particles obtained from the spray solution without polymeric precursors had irregular morphology and hardly aggregated morphology. On the other hand, the cathode particles obtained from the spray solution with citric acid and ethylene glycol had fine size and regular morphologies. The cathode particles obtained from the spray solution containing adequate amounts of citric acid and ethylene glycol had several hundreds nanometer and narrow size distribution. The maximum discharge capacity of the cathode particles was 218 mAh/g when the excess of lithium component added to the spray solution was 6 mol% of the stoichiometric amount to obtain the LiNi0.8Co0.15Mn0.05O2 particles. The discharge capacities of the fine-sized LiNi0.8Co0.15Mn0.05O2 particles dropped from 218 to 213 mAh/g by the 50th cycle at a current density of 0.1 C.  相似文献   

11.
《Ceramics International》2020,46(6):7625-7633
A long-lived cycling property is an important factor for the extensive use of the lithium-ion batteries. In this study, a NaAlO2 layer was initially coated on the LiNi0.5Co0.2Mn0.3O2 surface. Electrochemical tests indicate that the coated surface achieves better cycling stability and a higher capacity at 25 °C. In addition, the 1 wt % NaAlO2-coated sample exhibits the best performance, and it also exhibits a discharge specific capacity of 189.6 mAh∙g−1 at 0.1C in the first cycle. After 800 cycles at 1C, the capacity retention of the 1 wt % NaAlO2-coated sample is approximately 73.31%, a value that is 21.26% higher than the pristine sample. The electrochemical impedance spectroscopy (EIS) analysis reveals a decrease in the LiNi0.5Co0.2Mn0.3O2 charge transfer impedance and a significant increase in lithium ion diffusion after the application of the NaAlO2 coating. The high ion diffusion coefficient and low charge transfer impedance are conducive to the better rate performance of NaAlO2-coated LiNi0.5Co0.2Mn0.3O2.  相似文献   

12.
《Ceramics International》2019,45(15):18965-18971
Different calcination atmospheres of air, 50% oxygen (vs. N2) and pure oxygen have been used to prepare special LiNi0.8Co0.1Mn0.1O2 cathode materials to observe the influence of oxygen composition. To investigate the structure and electrochemical property of the samples using different oxygen compositions, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), cycling performance tests and electrochemical impedance spectroscopy (EIS) were carried out. XRD, SEM, and XPS results show that the sample made using higher oxygen composition has less cation mixing and lower levels of Ni2+. However, both samples have almost the same oxygen environments on their surfaces as well as micro-morphology and size. The sample with a higher oxygen composition shows better electrochemical performance. Interestingly, the electrochemical performance of the sample made using 50% oxygen is similar to that made with pure oxygen and much better than the sample made with air. It has a specific capacity of 202.4 mAh g−1 at 0.1C and a capacity retention of 85.2% after 300 cycles at 1C, which may be meaningful for balancing cost and performance.  相似文献   

13.
《Ceramics International》2016,42(13):14587-14594
A facile chemical deposition method has been adopted to prepare cerium fluoride (CeF3) surface modified LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion batteries. Structure analyses reveal that the surface of LiNi1/3Co1/3Mn1/3O2 particles is uniformly coated by CeF3. Electrochemical tests indicate that the optimal CeF3 content is 1 wt%. The 1 wt% CeF3-coated LiNi1/3Co1/3Mn1/3O2 can deliver a discharge capacity of 107.1 mA h g−1 even at 5 C rate, while the pristine does only 57.3 mA h g−1. Compared to the pristine, the 1 wt% CeF3-coated LiNi1/3Co1/3Mn1/3O2 exhibits the greatly enhanced capacity and cycling stability in the voltage range of 3.0–4.5 V, which suggests that the CeF3 coating has the positive effect on the high-voltage application of LiNi1/3Co1/3Mn1/3O2. According to the analyses from electrochemical impedance spectra, enhanced electrochemical performance is mainly because the stable CeF3 coating layer can prevent the HF-containing electrolyte from continuously attacking the LiNi1/3Co1/3Mn1/3O2 cathode and retard the passivating layer growth on the cathode.  相似文献   

14.
We reported here on the synthesis, the crystal structure and the study of the structural changes during the electrochemical cycling of layered LiNi0.1Mn0.1Co0.8O2 positive electrode material. Rietveld refinement analysis shows that this material exhibits almost an ideal α-NaFeO2 structure with practically no lithium-nickel disorder. The SQUID measurements confirm this structural result and evidenced that this material consists of Ni2+, Mn4+ and Co3+ ions.Unlike LiNiO2 and LiCoO2 conventional electrode materials, there was no structural modification upon lithium removal in the whole 0.42 ≤ x ≤1.0 studied composition range. The peaks revealed in the incremental capacity curve were attributed to the successive oxidation of Ni2+ and Co3+ while Mn4+ remains electrochemically inactive.  相似文献   

15.
《Ceramics International》2017,43(4):3483-3488
The lithiated metal oxide precursor with α-NaFeO2 structure and low crystallinity prepared by a hydrothermal process is verified to be Li-Ni-Co-Mn-Mo composite oxide. The layered Li(Ni0.5Co0.2Mn0.3)1-xMoxO2 (x=0, 0.005, 0.01 and 0.02) cathode material with high crystallinity for lithium ion batteries (LIBs) is obtained from the lithiated metal oxide precursor by heat treatment. The results of SEM and EDS mapping characterization indicate that the molybdenum is distributed in the materials homogeneously. The effects of molybdenum on the structure, morphology and electrochemical performances of the LiNi0.5Co0.2Mn0.3O2 are extensively studied. According to the results of electrochemical characterizations, the Li(Ni0.5Co0.2Mn0.3)0.99Mo0.01O2 sample exhibits the best discharge cycling performance with capacity retention of 97.0% after 50 cycles, and an excellent rate performance of 125.5 mAh·g−1 at 8C rate. The Li(Ni0.5Co0.2Mn0.3)0.99Mo0.01O2 sample also shows a lower potential polarization, smaller impedance parameters and a larger Li+ diffusion by CV and EIS analyses.  相似文献   

16.
It is still a huge challenge to improve the safety and stability of Ni-rich (LiNi0.8Co0.1Mn0.1O2) cathode materials at elevated potential. Herein, the PrF3 layer is employed to protect LiNi0.8Co0.1Mn0.1O2 (NCM811) via a simple wet chemical process. It was confirmed by XRD, HR-SEM, TEM, EDS, and XPS tests that PrF3 is evenly covered throughout the surface of NCM811 without affecting the particle size and surface morphology. In particular, 1 wt% PrF3 coated NCM811 exhibits excellent stability and rate capability with the capacity retention of 86.3% after 100 cycles at 1 C under a cut-off potential of 4.3 V, while the retention of pristine one is only 73.8%. Moreover, the capacity retention of 1 wt% PrF3 coated samples enhances from 74.5% to 88.5% after 50 cycles at 1 C under higher cut-off voltage of 4.6 V. The superior performance for coated samples can be attributed to the fact that PrF3 can effectively isolate the active material and the electrolyte from HF corrosion, and at the same time, reduce the generation of micro-cracks on the surface during prolonged cycles. Furthermore, as a physical barrier, PrF3 alleviates the dissolution of transition metals in the electrolyte largely. These results suggest that the stability of NCM811 can be greatly upgraded at high voltage by PrF3 coating.  相似文献   

17.
LiNi1/3Co1/3Mn1/3O2 was applied as a promising material to the all-solid-state lithium cells using the 80Li2S·19P2S5·1P2O5 (mol%) solid electrolyte. The cell showed the first discharge capacity of 115 mAh g−1 at the current density of 0.064 mA cm−2 and retained the reversible capacity of 110 mAh g−1 after 10 cycles. The interfacial resistance was observed in the impedance spectrum of the all-solid-state cell charged to 4.4 V (vs. Li) and the transition metal elements were detected on the solid electrolyte in the vicinity of LiNi1/3Co1/3Mn1/3O2 by the TEM observations with EDX analyses. The electrochemical performance was improved by the coating of LiNi1/3Co1/3Mn1/3O2 particles with Li4Ti5O12 film. The interfacial resistance was decreased and the discharge capacity was increased from 63 to 83 mAh g−1 at 1.3 mA cm−2 by the coating. The electrochemical performance of LiNi1/3Co1/3Mn1/3O2 was compared with that of LiCoO2, LiMn2O4 and LiNiO2 in the all-solid-state cells. The rate capability of LiNi1/3Co1/3Mn1/3O2 was lower than that of LiCoO2. However, the reversible capacity of LiNi1/3Co1/3Mn1/3O2 at 0.064 mA cm−2 was larger than that of LiCoO2, LiMn2O4 and LiNiO2.  相似文献   

18.
LiNi0.8Co0.2O2 cathode powders for lithium-ion batteries were prepared by a modified sol–gel method with citric acid as chelating agent and a small amount of hydroxypropyl cellulose as dispersant agent. The structure and morphology of LiNi0.8Co0.2O2 powders calcined at various temperatures for 4 h in air were characterized by means of powder X-ray diffraction analyzer, scanning electron microscope, thermogravimetric analyzer and differential thermal analyzer, and Brunauer–Emmett–Teller specific surface area analyzer. The results show that LiNi0.8Co0.2O2 powders calcined at 800 °C exhibit the best layered structure ordering and appear to have monodispersed particulates surface. In addition, the electrochemical properties of LiNi0.8Co0.2O2 powders as cathode material were investigated by the charge–discharge and cyclic voltammetry studies in a three-electrode test cell. The initial charge–discharge studies indicate that LiNi0.8Co0.2O2 cathode material obtained from the powders calcined at 800 °C shows the largest charge capacity of 231 mAh g−1 and the largest discharge capacity of 191 mAh g−1. And, the cyclic voltammetry studies indicate that Li+ insertion and extraction in LiNi0.8Co0.2O2 powders is reversible except for the first cycle.  相似文献   

19.
《Ceramics International》2023,49(3):4184-4192
Single-crystal cathode materials are a potential research focus for high-nickel ternary cathode materials owing to their high compaction density and good electrochemical stability. However, in the traditional sintering process, lithium is lost because of the long-time and higher-temperature sintering, which reduces the migration energy barrier of Ni2+ and increases the degree of mixing of Li+ and Ni2+. Herein, for the first time, a method for short-time high-temperature sintering combined with low-temperature heat preservation is proposed to prepare LiNi0.6Co0.6Mn0.2O2 (NCM622) single crystal materials in a mixed molten salt system of LiOH and Li2CO3. In analyses of morphology, structure and electrochemical properties, the prepared NCM622 exhibits excellent cycling stability owing to an ordered layered structure and low cation mixing degree. The single-crystal material shows an excellent capacity retention of 93.19% (150.49–140.24mAh·g?1) after 100 cycles at 1 C in the voltage range of 2.8–4.3 V. The single crystal particles exhibit reliable stability after long cycling without microcracks in the cycled particles. Furthermore, the preparation cost could be significantly reduced with a closed loop of the flux salt. The short-time high-temperature combined with the low-temperature holding sintering method may provide an effective strategy for the synthesis of other single-crystal materials with excellent electrochemical properties.  相似文献   

20.
The Ni-rich LiNi0.83Co0.12Mn0.05O2 (NCM83) cathode materials have drawn intensive attention due to the high energy density and low cost. However, Ni-rich LiNi1-x-yCoxMnyO2 still has the fatal weakness of poor cycle stability, limiting its further wide application. Bulk doping is an effective means to enhance the cycle stability, yet the electrochemical performances are very sensitive to the doping quantity. Here a facile method of co-precipitation is adopted to coat (Ni0.4Co0.2Mn0.4)1-xAlx(OH)2+x on precursor particles of NCM83. Al ions diffuse evenly in the NCM83 particles after sintering. The cells are operated at a high cut-off voltage of 4.5 V. The discharge capacity of NCM83 is 187.8 mAh g?1, and decays fast with cycles. The doped sample even exhibits a higher discharge capacity of 195 mAh g?1, and the capacity retention is improved to 83.8% after 200 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号