首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
化学链燃烧技术是一种新型的近“零碳”排放燃烧技术,载氧体在化学链燃烧反应过程中发挥着载氧和传热的双重作用。以活性催化组分为载体,通过调谐微观结构提高Fe基载氧体的反应性能是目前化学链领域的研究热点之一。基于密度泛函理论,以CeO2为活性催化载体,对Fe基载氧体进行催化调谐。通过优化构建组合物模型,系统分析了组合物模型中Fe2O3团簇不同点位吸附CO的态密度、吸附能、差分电荷密度和活化能等电子结构特性参数。研究结果表明,Fe2O3团簇的电子向CeO2(111)表面转移,Fe2O3团簇的吸附能为-3.92 eV,Fe2O3团簇与CeO2(111)表面稳定结合;态密度(DOS)分析发现负载后的Fe2O3团簇p和d轨道在-8~0 eV电子向费米能级方向迁移,表明吸附作用增强。Fe2O  相似文献   

2.
袁妮妮  白红存  安梅  胡修德  郭庆杰 《化工学报》2020,71(11):5294-5302
基于热重实验(TGA)和密度泛函理论(DFT)计算,对Cu低浓度掺杂Fe2O3载氧体(Cu-Fe2O3)与H2在化学链燃烧过程中反应活性和微观分子反应机理进行研究。TGA结果显示,Cu低浓度掺杂降低Fe2O3载氧体与H2反应表观活化能Ea (从83.9 kJ/mol降低至72.3 kJ/mol),因此,低浓度Cu掺杂由于原子尺度Cu掺杂缺陷的引入的确提高了Fe2O3载氧体转化率和晶格氧释放速率。DFT计算从分子水平证实Cu低浓度掺杂改变了Fe2O3载氧体与H2反应路径,路径分析表明,Cu掺杂使Fe2O3载氧体与H2反应能垒从2.30 eV分别降低至1.81 eV(Fe原子top位反应)和1.68 eV(Cu原子top位反应),Cu掺杂的Fe-基载氧体的氢还原反应优先发生在掺杂的Cu原子位,其次为Fe原子位。此外,计算结果表明,因Cu-O和Cu-Fe键的引入,低浓度Cu掺杂改变了Fe2O3载氧体微观结构,这对于载氧体的晶格氧快速释放是有利的。  相似文献   

3.
开发高效廉价铁基载氧体是天然气化学链重整制氢技术走向应用的关键。为探究高效铁基载氧体设计的基本依据,利用自行设计的脉冲反应器和气体产物全量同步在线分析系统,在800℃和无内外扩散影响的条件下研究了不同Fe2O3质量分数的Fe2O3-Al2O3载氧体的甲烷脉冲法还原特性。结果表明:Fe2O3的还原反应依两段机理进行,随载氧体颗粒内Fe2O3含量的多少可停止于Fe3O4,也可完全进行至FeO;气相产物中CO2与CO的摩尔比随CH4脉冲次数的变化规律也与Fe2O3含量密切相关。对用α-Al2O3粉末稀释高Fe2O3质量分数载氧体粉末的方法制备的低Fe...  相似文献   

4.
流化床铁基载氧体辅助富氧燃烧下传统石英砂床料被铁基载氧体替代,铁基载氧体扩展了传统床料的“热载体”的功能,另承担了“氧载体”的角色,为调节炉内氧分布与煤燃烧过程匹配提供了新思路。本文在热重实验平台探究了10%O2/90%CO2气氛下分析纯Fe2O3、赤铁矿及钢渣三种铁基载氧体辅助无烟煤焦燃烧特性及动力学。结果表明,相较于纯无烟煤焦燃烧,铁基载氧体辅助燃烧下无烟煤焦的燃烧特性得到显著改善,其中燃烧速率提高29%以上,燃尽温度降低65℃以上,综合燃烧指数提升2倍以上,活化能与指前因子同步增加且表现出“补偿效应”。三种铁基载氧体中分析纯Fe2O3对无烟煤焦燃烧特性的改善略优于赤铁矿和钢渣,钢渣可作为流化床铁基载氧体辅助富氧燃烧的床料替代石英砂。  相似文献   

5.
借助ReaxFF-MD方法,对化学链燃烧过程Al2O3负载Fe2O3载氧体(Fe2O3/Al2O3)表面CH4反应过程模拟,探究Al2O3惰性载体对Fe2O3-CH4体系燃烧过程的调控机制。研究发现添加Al2O3惰性载体改变了化学链燃烧过程中Fe2O3载氧体反应性和Fe2O3/Al2O3-CH4反应体系的热力学和动力学行为。主要是促进了Fe2O3载氧体表面CH4氧化,并对CH4反应过程、中间体、产物及其反应速率和放热量等均具有显著促进和调控作用。原因在于Al2O3惰性载体对Fe2O3活性相中晶格氧的活化作用促进了晶格氧的迁移-扩散-释放。添加惰性载体增强了Fe2O3载氧体在化学链燃烧过程晶格氧释放速率和释放量,有利于CH4氧化燃烧向合成气的高效、清洁转化,强化了化学链燃烧过程,满足当前能源高效转化和碳减排目标。  相似文献   

6.
借助ReaxFF-MD方法,对化学链燃烧过程Al2O3负载Fe2O3载氧体(Fe2O3/Al2O3)表面CH4反应过程模拟,探究Al2O3惰性载体对Fe2O3-CH4体系燃烧过程的调控机制。研究发现添加Al2O3惰性载体改变了化学链燃烧过程中Fe2O3载氧体反应性和Fe2O3/Al2O3-CH4反应体系的热力学和动力学行为。主要是促进了Fe2O3载氧体表面CH4氧化,并对CH4反应过程、中间体、产物及其反应速率和放热量等均具有显著促进和调控作用。原因在于Al2O3惰性载体对Fe2O3活性相中晶格氧的活化作用促进了晶格氧的迁移-扩散-释放。添加惰性载体增强了Fe2O3载氧体在化学链燃烧过程晶格氧释放速率和释放量,有利于CH4氧化燃烧向合成气的高效、清洁转化,强化了化学链燃烧过程,满足当前能源高效转化和碳减排目标。  相似文献   

7.
前期研究发现高弥勒指数晶面载氧体Fe2O3[104]具有高的化学链燃烧反应特性,且Co对煤及其热解中间产物具有催化气化和催化转化作用。通过正交实验优化制备Co-Fe2O3[104]/Al2O3载氧体体系结构,开展Co-Fe2O3[104]/Al2O3与褐煤的化学链燃烧,揭示载氧体与褐煤发生化学链燃烧的特性。结果表明:形貌控制制备的高弥勒指数晶面铁基载氧体Co-Fe2O3[104]/Al2O3(质量分数10%)促进了褐煤化学链燃烧过程中氧的迁移速率以及载氧体的还原程度,进而显著提高了载氧体与褐煤化学链燃烧的反应速率及反应效率。进一步通过CO多循环化学链燃烧反应、XRD和TEM表征了Co-Fe2O3[104]/Al2O3(10%)的可再生性及反应稳定性。  相似文献   

8.
在间歇式固定床反应器上,基于Fe2O3/Al2O3载氧体,研究了还原阶段反应温度和Fe2O3负载量对无烟煤化学链燃烧产物及S元素分布的影响。研究结果表明,含碳气体释放量随反应温度升高而增加,随Fe2O3负载量先增加后减少。产物中CO2比例随反应温度升高先增加后减少,在850℃时达到最高(37.6%)。在实验条件下,未检测到SO2生成。反应2 h时,载氧体中S元素的富集程度随温度和Fe2O3负载量升高而增加;5.5 h时,载氧体中S元素分布比例随温度升高而显著降低。利用SEM分析了载氧体表面微观形态结构。分析表明,Fe2O3负载量大于40%会导致载氧体轻微烧结。  相似文献   

9.
化学链燃烧铁基载氧体还原反应积炭趋势   总被引:3,自引:2,他引:1  
玄伟伟  张建胜 《化工学报》2012,63(3):904-909
利用热重分析仪对采用机械混合法自行制备的铁基载体还原过程中的积炭现象进行了实验研究。根据实验获得的热重曲线对铁基载氧体的CH4还原特性进行了分析,实验结果表明,CH4与铁基载氧体的还原反应过程中存在较为严重的积炭影响,且气体的浓度对反应有较大的影响。通过检测载氧体氧化过程中生成的CO2量对这种影响进行了定量分析,结果表明积炭随着循环次数的增多而略有下降。XRD和SEM分析结果显示还原反应生成的C部分与载体反应生成Fe3C,另一部分以碳丝的形式存在于载体表面以及颗粒之间。  相似文献   

10.
以CaSO4为载氧体,采用机械混合法制备了将军庙煤灰修饰的CaSO4-Ash复合载氧体。借助TG-MS考察复合载氧体CaSO4-Ash与将军庙煤的化学链气化反应特性,并对将军庙煤灰改性CaSO4载氧体的作用机理进行了研究。结果表明:将军庙煤灰对CaSO4载氧体有一定的改性作用。900℃时,与纯CaSO4载氧体相比,CaSO4-Ash复合载氧体表现出良好的反应活性和稳定性,CaSO4-Ash复合载氧体化学链气化产生的CO量明显增多,产率也更加稳定。X射线衍射分析表明,CaSO4-Ash复合载氧体中存在少量的Ca2Fe2O5和Fe2O3,它们附着在CaSO4表面,作为CaSO4晶格氧传输的中介,起到促进CaSO4晶格氧迁移...  相似文献   

11.
铁基复合载氧体煤化学链气化反应特性及机理   总被引:4,自引:4,他引:0       下载免费PDF全文
程煜  刘永卓  田红景  郭庆杰 《化工学报》2013,64(7):2587-2595
以水蒸气作为气化/流化介质,在流化床中研究了两种铁基复合载氧体的化学链气化反应特性及循环特性,并对气化过程中的反应机理、动力学方程进行了推断。结果表明:温度为920℃时,添加不同修饰物的铁基复合载氧体与煤焦气化的反应活性依次为Fe4Al6K1>Fe4Al6>Fe4Al6Ni1。在多次循环实验过程中,合成气成分保持稳定,表明Fe4Al6K1复合载氧体循环特性良好。XRD谱图分析表明,六次氧化还原实验后的铁基载氧体氧化态仍为Fe2O3。K+主要以铁酸钾形态存在,该结构有利于促进化学链气化反应。利用高斯函数对气化反应速率进行了峰拟合,拟合结果表明化学链气化主要分为3个阶段:化学链作用阶段、煤气化阶段以及Fe3O4向FeO转变的气化阶段。  相似文献   

12.
Fe‐based oxygen‐carrier particles with attapulgite (ATP) as a support material for coal chemical looping combustion (CLC) have been prepared using a sol‐gel approach. The multiredox characteristics of the prepared Fe4ATP6 (Fe2O3 to ATP mass ratio of 40:60) were experimentally examined in a batch fluidized bed reactor at 900°C. The experimental results indicated that the synergistic reactions between ATP and Fe2O3 increased the coal conversion. Fe4ATP6 exhibited high reactivity, particularly for low‐rank coals, in the CLC process. The improved pore structure and surface area were responsible for the high reactivity of Fe4ATP6. In 60 redox cycles, H2 was mainly generated in the outlet gas as the carbon conversion efficiency had reached 95%, and both the coal combustion efficiency and CO2 capture efficiency were greater than 95%. © 2015 American Institute of Chemical Engineers AIChE J, 62: 996–1006, 2016  相似文献   

13.
Chemical-looping combustion (CLC) is a novel combustion technology with inherent separation of the greenhouse gas CO2 and low NOx (NO, NO2, N2O) emissions. In CLC, the solid oxygen carrier supplies the stoichiometric oxygen needed for CO2 and water formation, resulting in a free nitrogen mixture. The performance of oxygen carrier is the key to CLC's application. A good oxygen carrier for CLC should readily react with the fuel (fuel reactor) and should be re-oxidized upon being contacted with oxygen (air reactor). In this case, the behavior of CaSO4 as an oxygen carrier for a CLC process, reacting with gas fuels (e.g., CO, H2, and CH4) and solid fuels (e.g., coal and biomass), has been analyzed. The performance of the oxygen carrier can be improved by changing the preparation method or by making mixed oxides. Generally, Al2O3, SiO2, etc., which act a porous support providing a higher surface area for reaction, are used as the inert binder to increase the reactivity, durability, and fluidizability of the oxygen carrier particles. Further, simulation analysis of a CLC process based on CaSO4 oxygen carrier was also analyzed. Finally, some important tendencies related to CaSO4 oxygen carrier in CLC technology are put forward.  相似文献   

14.
The chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) processes are novel solutions for efficient combustion with direct separation of carbon dioxide. These processes use a metal oxide as an oxygen carrier to transfer oxygen from an air to a fuel reactor, where the fuel reacts with the solid oxygen carrier. When utilizing coal in CLC, the oxygen carrier particles could be affected through interaction with the ash-forming mineral matter found in coal, causing deactivation and/or agglomeration. In this work, possible interactions between minerals commonly encountered in coal and several promising oxygen carriers that are currently under investigation for their use in CLC are studied by both experiment and thermodynamic equilibrium calculations. Possible interaction was studied for both highly reducing and oxidizing conditions at 900 °C. Under highly reducing conditions pyrite was found to have by far the most deteriorating effect on the oxygen carrier particles, as the sulfur in the pyrite reacted with the oxygen carrier to form sulfides. Quartz and clay minerals were found to have a rather low influence on the oxygen carriers. Out of the oxygen carriers investigated, CuO/MgAl2O4 and the Mn3O4/ZrO2 oxygen carriers tended to be quite reactive towards mineral matter whereas ilmenite has been shown to be the most robust oxygen carrier. Although sulfur can clearly deactivate Ni, Cu and Mn based oxygen carriers under sub-stoichiometric conditions, when the fuel is converted fully to CO2 and H2O, sulfides are only expected for Ni-based oxygen carriers.  相似文献   

15.
A thermal analyzer-differential scanning calorimeter-mass spectrometer (TG-DSC-MS) was used to study oxygen carriers (OC) for their potential use for the application of chemical looping combustion (CLC) to solid fuels. Reaction rates, changes in reaction rates with repeated oxidation-reductions, exothermic heats during oxidation, and the effect of changing reduction gas compositions were studied. Oxidation rates were greater than reduction rates and reaction rates were reproducible through multiple oxidation-reduction cycles except where agglomeration occurred with powders. Iron oxide (Fe2O3 powder) and iron-based catalysts were found suitable for CLC of solid fuels having rapid reduction rates which increased with higher reducing gas concentrations. Fe2O3 powder was used to oxidize a high carbon coal char in an inert gas removing 88% of the carbon from the char. Other properties such as cost and durability indicated iron oxide OCs potential use for CLC of solid fuels.  相似文献   

16.
《Fuel》2007,86(12-13):1947-1958
Chemical-looping combustion is a novel technique used for CO2 separation that previously has been demonstrated for gaseous fuel. This work demonstrates the feasibility of using solid fuel (petroleum coke) in chemical-looping combustion (CLC). Here, the reaction between the oxygen carrier and solid fuel occurs via the gasification intermediates, primarily CO and H2. A laboratory fluidized-bed reactor system for solid fuel, simulating a CLC-system by exposing oxygen-carrying particles to alternating reducing and oxidizing conditions, has been developed. In each reducing period, 0.2 g of petroleum coke was added to 20 g of oxygen carrier composed of 60% active material of Fe2O3 and 40% inert MgAl2O4. The effect of steam and SO2 concentration in the fluidizing gas was investigated as well as effect of temperature. The rate of reaction was found to be highly dependent on the steam and SO2 concentration as well as the temperature. Also shown was that the presence of a metal oxide enhances the gasification of petroleum coke. A preliminary estimation of the oxygen carrier inventory needed in a real CLC system showed that it would be below 2000 kg/MWth.  相似文献   

17.
Iron oxide supported oxygen carrier (OC) is regarded to a promising candidate for chemical looping combustion (CLC). However, phase separation between Fe2O3 and supports often occurs resulted from the severe sintering of supports during calcination, which leads to the sintering and breakage of Fe2O3 thus the decrease of redox reactivity. In this article, La‐promoted Fe2O3/α‐Al2O3 were used as OCs for CLC of CH4 and for the first time found that the OC with the addition of 18 wt % La exhibited outstanding reactivity and redox stability during 50 cycles of CLC of CH4. Such a superior performance originated from the formation of LaAl12O19 hexaaluminate (La‐HA) phase with not only small particle size but also excellent thermal stability at CLC conditions, which worked as a binder to prevent the phase separation thereby the sintering and breakage of active species α‐Fe2O3 were avoided during reaction. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2827–2838, 2017  相似文献   

18.
M.K. Chandel  A. Delebarre 《Fuel》2009,88(5):898-3627
Chemical looping combustion (CLC) is the process in which metal oxides, rather than air or pure oxygen, supply the oxygen required for combustion. In this process, different gaseous fuels can be burnt with the inherent separation of CO2. The feasibility of the CLC system depends greatly on the selection of appropriate metal oxides as oxygen carriers (OC). In this study, NiO-NiAl2O4, Cu0.95Fe1.05AlO4, and CuO-Cu0.95Fe1.05AlO4 were tested experimentally in a fluidized bed reactor as a function of oxidation-reduction cycles, temperature, bed inventory and superficial gas velocity. The results showed that flue gases with a CO2 concentration as high as 97% can be obtained. The flue gases should be suitable for transport and storage after clean-up and purification. With an increase in the bed inventory or a decrease in superficial gas velocity, the flue gas characteristics improved i.e. more CO2 and fewer secondary components or less unreacted fuel were obtained. Carbon formation could occur during the reduction phase but it decreased with an increase in temperature and inventory and could be completely avoided by mixing steam with the fuel. The reactivity of NiO/NiAl2O4 was higher than the Cu- and Fe-based oxygen carriers. Increasing the CuO fraction in the oxygen carrier led to defluidization of the bed during the reduction and oxidation phases.  相似文献   

19.
Chemical looping is a novel fuel conversion and material separation technology. It can be applied to obtain sulphur through selective oxidation of H2S. Further, chemical looping combustion (CLC) of sulphur can generate SO2 with a high concentration without NOx formation. The high SO2 concentration is adjustable and facilitates large-scale H2SO4 production. In this study, we examined the thermodynamics of the CLC of sulphur for H2SO4 production, which has not been reported previously. We analyzed the effects of reactor temperature and sulphur to Fe2O3 oxygen carrier (OC) ratios on sulphur allotrope transformations and on the distributions of reaction products. Moreover, the reactors were operated auto-thermally. Based on this design, we examined the effects of fuel reactor (FR) and air reactor temperatures on the minimum recirculation of the OC, as well as the gas and solid products and heat released from the air reactor. Our results showed that the CLC of sulphur with Fe2O3 OC could occur through an auto-thermal process. The FR in a sulphur CLC system should be operated over a temperature range of 800–950°C, with an Fe2O3 OC recirculation between 45 and 143 kg/kgS(s). Furthermore, when the FR was operated in the auto-thermal mode, we achieved 100% SO2 conversion. The findings of this study may be applied to reactor design for large-scale H2SO4 production through CLC of sulphur.  相似文献   

20.
The objective of this study was to establish the kinetic of both reduction and oxidation reactions taking place in the chemical-looping combustion (CLC) process using ilmenite as an oxygen carrier. Because of the benefits of using of pre-oxidized ilmenite and the activation of the ilmenite during the redox cycles, the reactivity of both the pre-oxidized and activated ilmenite was analyzed. The experimental tests were carried out in a thermogravimetric analyzer (TGA), using H2, CO or CH4 as reducing gases, and O2 for the oxidation step. Thus, the reactivity with the main reacting gases was analyzed when natural gas, syngas or coal are used as fuels in a CLC system. The changing grain size model (CGSM) was used to predict the evolution with time of the solid conversion and to determine the kinetic parameters. In most cases, the reaction was controlled by chemical reaction in the grain boundary. In addition, to predict the behaviour of the oxidation during the first redox cycle of pre-oxidized ilmenite, a mixed resistance between chemical reaction and diffusion in the solid product was needed. The kinetic parameters of both reduction and oxidation reactions of the pre-oxidized and activated ilmenite were established. The reaction order for the main part of the reduction reactions of pre-oxidized and activated ilmenite with H2, CO, CH4 and O2 was n=1, being different (n=0.8) for the reaction of activated ilmenite with CO. Activation energies from 109 to 165 kJ mol−1 for pre-oxidized ilmenite and from 65 to 135 kJ mol−1 for activated ilmenite were found for the different reactions with H2, CO and CH4. For the oxidation reaction activation energies found were lower, 11 kJ mol−1 for pre-oxidized and 25 kJ mol−1 for activated ilmenite.Finally, simplified models of the fuel and air reactors were used to do an assessment of the use of ilmenite as an oxygen carrier in a CLC system. The reactor models use the reaction model in the particle and the kinetic parameters obtained in this work. Taking into account for its oxygen transport capacity, the moderated solids inventory and the low cost of the material, ilmenite presents a competitive performance against synthetic oxygen carriers when coal or syngas are used as fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号