首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
A functional form of equation for predicting pressure drop in a modified non-Newtonian downflow bubble column has been formulated. The equation has been developed based on the bubble formation, drag at interface and the wettability effect of the liquid. Also the bubble-liquid interfacial shear stress in two-phase flow is analyzed and correlated with the dynamic, geometric and physical variables. The functional form of equation appears to predict the pressure drop satisfactorily for two-phase dispersed flow in the co-current modified downflow bubble column with carboxy methyl cellulose (CMC) solution in water with different concentrations.  相似文献   

2.
Experiments were conducted on laminar flow of non-Newtonian fluid through a packed bed of low column to packing particle diameter ratio (3.8) to elucidate the wall effect on pressure drop and mass flux. Carboxy methyl cellulose (CMC) at different concentrations was passed through the packed bed and the pressure drop was measured at different CMC concentrations and flow rates. It was found that the pressure drop increases with the increase in CMC flow rate. The pressure drop also increases with the increase in CMC concentration for a given flow rate. The friction factor is plotted against Reynolds number and the data for different CMC concentration are found to be scattered around a line expressed as f=1.03/Re0.87. The tri-regional model of Cohen and Metzner [1] predicted correctly the mass flux in the packed bed at different pressure drop values and CMC concentrations with parameters K0 (related to pore geometry) value of 1.5 and Le/L (related to effective path length) value of 1.2, respectively.  相似文献   

3.
In the present work, a new low‐shear rotating reactor concept was introduced for process intensification of heterogeneous catalytic reactions in cocurrent gas–liquid downflow and upflow packed‐bed reactors. To properly assess potential advantages of this new reactor concept, exhaustive hydrodynamic experiments were carried out using embedded low‐intrusive wire mesh sensors. The effect of the rotational velocity on liquid flow patterns in the bed cross‐section, liquid saturation, pressure drop, and regime transition was investigated. Furthermore, liquid residence time and Péclet number estimated by a stimulus‐response technique and a macro‐mixing model were presented and discussed with respect to the prevailing flow patterns. The results revealed that the column rotation induces different flow patterns in the cross‐section of the packed bed operating in a concurrent downflow or upflow mode. Moreover, the new reactor concept exhibits a more flexible adjustment of pressure drop, liquid saturation, liquid residence time, and back‐mixing at constant flow rates. © 2016 American Institute of Chemical Engineers AIChE J, 63: 283–294, 2017  相似文献   

4.
错流旋转填料床气相压降特性   总被引:5,自引:0,他引:5       下载免费PDF全文
旋转填料床的气相压降是旋转填料床应用和设计的一项重要指标。在气液两相错流流动条件下,利用空气-水系统对错流旋转填充床的气相压降进行分段模型化和实验研究。按照错流旋转填料床气体流动的路径将气相压降分为进口压降、填料层压降、集气段旋转动能转化压降和出气段压降。推导出压降与操作工况的关联式,其计算值与实测值吻合较好。实验表明错流旋转填料床的气相总压降与气体流量、旋转床转速、液体流量有关。在高转速和小气量的条件下,气相压降随气量增大先下降后上升;其他情况随气量增大而上升。错流旋转填料床气相压降随转速上升而下降,在小气量情况下转速对气相压降有明显影响。气相压降随进液量的增大而增大,当旋转填料床在低转速时进液量对气相压降有明显影响。  相似文献   

5.
An understanding of the hydrodynamics of trickle bed reactors (TBR) is essential for their design and prediction of their performance. Flow variables, packing characteristics, physical properties of fluids and operation modes influence the behavior of the TBR. The existence of multiple hydrodynamic states or hysteresis (pressure drop, liquid holdup, catalyst wetting, gas-liquid mass transfer) is due to the different flow structures in the packed bed and can be attained by a set of different operating procedures. Experiments were performed to study the effect of liquid and gas velocity, liquid surface tension, liquid viscosity and the particle diameter of the packing on two-phase pressure drop hysteresis. The parallel zone model for pressure drop hysteresis in the trickling flow was used for analysis of experimental data and flow structure. Theoretically predicted pressure drop hysteresis loop is in satisfactory agreement with experimental data.  相似文献   

6.
错流旋转填料床气相压降特性研究   总被引:5,自引:0,他引:5  
旋转床的气相压降是旋转床工程设计的一项重要指标。笔者利用空气,水系统对错流旋转填料床的气相压降进行实验研究。结果表明:在实验范围内,错流旋转床压降是逆流旋转床的十分之一;对错流旋转床压降影响较大的是转速和气量,与液流量几乎无关。  相似文献   

7.
The influences of concurrent flow of air–Newtonian and non-Newtonian liquid systems on pressure drop and on its reduction in downflow trickle bed reactor are presented in the present work. The pressure drop at different flow regimes in the trickle bed is enunciated by the dynamic interaction model based on the framework of the momentum balance. From the analysis, it is observed that the non-ideality factor of bubble flow regime is higher than that of pulse and trickle flow regimes which may influence efficiency of the reactor. The present work also concludes that the percentage of pressure reduction increases with increasing the surfactant concentration. However there is a limitation of change of concentration, above which no more reduction can be obtained. The present study may be useful for further understanding and modelling of multiphase reactor with non-Newtonian liquid, which has great industrial applications.  相似文献   

8.
三角形螺旋填料旋转床气相压降特性   总被引:1,自引:0,他引:1  
为深入了解三角形螺旋填料旋转床气相压降的影响因素及规律,以空气-水为实验物系进行了实验和模型研究。改变气、液流量及转速测定气相压降的实验结果表明,气体流量和转速的增大均使干、湿床气相压降增大;液体流量增大时湿床气相压降先减小,而后基本保持不变;该旋转填料床具有气相压降小、操作弹性大的优点。按照气相压降产生的机理,将其分为局部压降、离心压降、转子外内腔压降和填料主体压降4部分进行模型研究,其中用旋涡理论描述转子外内腔压降、用简化的模型描述填料主体压降是新提出的方法,且所建模型能较好地描述气相压降的规律。  相似文献   

9.
Extensive experimental work on hysteresis in a cocurrent gas–liquid upflow packed bed was carried out with three kinds of packings and the air–water system. However, only when packed with small glass beads (f1.4 mm) was the bed pressure drop hysteresis observed. Two more liquids with different liquid properties were employed to further examine the influence of parameters on pressure drop hysteresis. The similarity of pressure drop hysteresis in packed beds was concluded in combination of experimental evidence reported in literature.  相似文献   

10.
Based on a self-established cold-flow experimental device, the pressure drop in a cocurrent downflow three-phase moving bed was investigated under a wide range of gas, liquid, and solid flow rates during dynamic and steady-state operation. The results showed that for the startup of the bed, since the first bed layer packed by fall-falling of particles had lower voidage, it would take at least one bed volume time to make the voidage in the bed reach the steady-state. Under steady-state conditions, the pressure drop increased with the increase of gas and liquid mass flow rates, liquid viscosity, and decreased with the increase of solid flow rate. Furthermore, it was found that the liquid distribution became more uniform due to particle movement. The experimental data obtained in this study was used to develop a correlation to predict the pressure drop in a three-phase moving bed with an average relative error of 9.32%.  相似文献   

11.
Experiments were conducted using various types of solid particles to investigate the hydrodynamic properties of a gas-liquid-solid spouted bed with a draft tube. The hydrodynamic properties under study include flow modes, pressure profile and pressure drop, bubble penetration depth, overall gas holdup, apparent liquid circulation rate and bubble size distribution. Three flow modes were classified: a packed bed mode, a fluidized bed mode and a circulated bed mode. It was found that the friction factor accounting for the friction loss in the bed varies linearly on a logarithmic scale with the Reynolds number defined based on the apparent liquid circulation rate. The bubble penetration depth in the annular region, overall gas holdup and apparent liquid circulation rate increase with an increase in gas or liquid velocity. At high gas flow conditions an optimal solids loading exists which yields a maximum apparent liquid circulation rate. A model was proposed to describe the liquid circulation behaviour in the draft tube three-phas spouted bed. The average bubble size in the draft tube region is higher than that in the annular region for both the dispersed bubble regime and the coalesced bubble regime in the draft tube region.  相似文献   

12.
阶梯环填料层流体力学和传质性能研究   总被引:1,自引:0,他引:1  
本文研究了16 mm聚丙烯阶梯环填料层的压强降和液流的分布特性,研究了液相传质性能。获得了压强降填料因子、泛点填料因子,以及液相真实传质单元高度的关联式。结果表明,阶梯环填料对液体分布的保持性能好,分散常数C值比同尺寸的拉西环大23.4%;传质单元高度比同尺寸的拉西环低20~45%。  相似文献   

13.
The hydrodynamic behavior of a cocurrent gas-liquid-solid semifluidized bed was investigated. A separate investigation was performed on a packed bed and a fluidized bed under gas-liquid flow conditions similar to that for the semifluidized bed. Parameters of the semifluidized bed under extensive study include pressure drop, gas holdup, onset liquid velocity for semifluidization, and the height of the packed bed section and the fluidized section. The pressure drop of the semi-fluidized bed obtained experimentally was compared favorably with that predicted by the model equations.  相似文献   

14.
The common factor that links various current methods of estimating drainage rate through a gas–liquid foam is that all losses of pressure due to flow are assumed to be entirely viscous. However, by drawing analogy with liquid flow through a packed bed, it is apparent that, for foams that are relatively wet or have relatively high Galileo number, there is a significant inertial loss. This is further demonstrated by determining, using computational fluid dynamics, the pressure losses at a constant expansion with fluid flow boundaries. A foam drainage equation that accounts for inertial pressure losses is proposed by adapting the functional form of the Ergun equation for pressure loss due to flow in a packed bed. This is tested against forced drainage data for foam stabilised by SDS with a mono-dispersed bubble size distribution from the literature. It is shown that the model accurately predicts the results with the use of only one adjustable constant, which is, in fact, the number of inertial velocity heads lost due to flow through a slice of foam of one bubble radius in thickness.  相似文献   

15.
With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carried out in a column with a monolithic bed of cell density of 50 cpsi with two different distributors (nozzle and packed bed distributors). Liquid saturation in individual channels was measured by using self-made micro-conductivity probes. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths. Overall bed pressure drop and mass transfer coefficients were measured. For liquid flow distribution and gas-liquid mass transfer, it is found that the superficial liquid velocity is a crucial factor and the packed bed distributor is better than the nozzle distributor. A semi-theoretical analysis using single channel models shows that the packed bed distributor always yields shorter and uniformly distributed liquid slugs compared to the nozzle distributor, which in turn ensures a better mass transfer performance. A bed scale mass transfer model is proposed by employing the single channel models in individual channels and incorporating effects of non-uniform liquid distribution along the bed cross-section. The model predicts the overall gas-liquid mass transfer coefficient with a relative error within ±30%.  相似文献   

16.
三维上流式反应器床层流动和返混特性   总被引:1,自引:0,他引:1       下载免费PDF全文
王威杰  雍玉梅  杨超  于康 《化工学报》2018,69(1):381-388
采用内径为280 mm的上流式反应器,以空气模拟气相、甘油和水混合溶液模拟渣油。用3种不同粒径的氧化铝球形工业催化剂颗粒为填充颗粒,考察了不同模拟物系的颗粒粒径、颗粒密度、液相黏度、不同床层的高径比和不同操作条件对上流式反应器内床层压降及其波动、床层轴向返混的影响规律。得到模拟工业运行物系和操作条件的上流式反应器床层总压降关联式,相对误差在12%以内。床层总压降均随床层高径比、颗粒密度和液相黏度增加而增大,但随颗粒粒径的增大而减小,床层压降波动随表观气速增加而增大。填充颗粒粒径越小、颗粒密度越小、高径比越大,床层内轴向返混越严重;床层内压降和轴向返混均随表观气速的增加而增大。  相似文献   

17.
Pressure drop and liquid holdup for two-phase concurrent downward flow in packed beds were correlated for various types of packings by taking into account two hydrodynamic regimes: a poor and a high gas-liquid interaction regime.Foaming and non-foaming systems have been considered.In the poor interaction regime, the pressure drop was calculated as due to the gas flowing in a bed restricted by the presence of the liquid. A correlation valid for a free liquid trickling, modified in order to take into account the effect of the pressure drop, is proposed and used to correlate liquid holdup in the presence of a concurrent gas flow.In the high interaction regime, empirical correlations were proposed for both foaming and non-foaming systems.All the employed correlations fit experimental results from several authors better than those proposed in the literature.  相似文献   

18.
通过冷态实验研究蓄热小球填充床的气体阻力特性,考察了气体流速、小球直径、堆积球层高度、空隙率对阻力损失的影响,得到了修正的Ergun公式系数. 结果表明,填充床中气体的阻力损失随气体流速增大而增大,呈二次方关系;对阻力系数回归,得到修正的Ergun公式系数f1=331.9, f2=1.402,由此计算的单位压降与实验值最接近.  相似文献   

19.
Milli‐scale reactors with an integrated microstructure offer a promising scale‐up approach for conventional microreactors. This study applies 3D‐printed structured porous millireactors to industrially relevant liquid‐liquid reactions. The underlying transport mechanisms are identified by quantifying interfacial heat and mass transfer. The structured reactors perform limited in Taylor flow compared to a packed‐bed reactor due to limited interfacial mass transfer. However, in stratified flow, their productivity increases significantly at a fraction of the pressure drop of a packed bed.  相似文献   

20.
Particle surface roughness is shown to have a significant effect on the pressure drop in a packed bed of adsorbent particles. The packed bed friction factor is determined using three spherical adsorbents of differing degree of surface roughness in the Reynolds number range 1-62. The results were successfully correlated using a correlation of the Ergun type. It is shown that surface roughness significantly increases the friction factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号