首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以金红石型TiO2、石墨和B2O3为原料,采用碳热还原法合成了TiB2粉末。借助X射线衍射、扫描电子显微镜和透射电子显微镜等分析手段,研究了工艺条件对合成TiB2的影响。结果表明:合成温度、球磨时间、保温时间、合成气氛是影响TiB2合成的主要因素。随着合成反应温度升高,TiO2的碳热还原顺序依次为:TiO2→Ti4O7→Ti6O11→Ti5O9→Ti3O5→Ti2O3。TiB2的生成反应温度开始于1300℃左右。真空下合成TiB2的最佳工艺条件为:球磨时间为24h,合成温度为1450℃,保温时间为3h。合成TiB2粉末的纯度达到98%,晶粒发育完整,平均粒径为2~3μm。  相似文献   

2.
TiO2-B2O3-C系统反应热力学初步探讨   总被引:1,自引:1,他引:0  
采用物质吉布斯自由能函数法,对TiO2-B2O3-C系进行了热力学分析.热力学计算结果表明:在采用碳热还原法还原TiO2时, TiO2是按照以下顺序依次被还原:TiO2→Ti4O7→Ti3O5→Ti2O3→TiO→Ti;采用碳热还原法合成TiB2的反应模型为:随着温度逐渐升高,TinO2n-1(n=2~4)被还原为TiO,B2O3被碳还原生成单质B和B4C,随后TiO与B或B4C 进一步反应生成TiB2;采用碳热还原法合成 TiB2时,硼源的选择对于合成温度的高低有直接影响,而采用B2O3作为合成TiB2的硼源,其原料来源充足,合成温度适中,适用于采用此法进行大规模工业生产;为降低反应温度,提高反应的转化率,缩短反应进程,应采用抽真空或在稀有气体气氛下进行,增大稀有气体流速,定时对炉内抽真空换气,以降低炉内CO分压PCO的工艺措施.  相似文献   

3.
TiB2材料氧化的热力学分析   总被引:2,自引:1,他引:1  
采用物质吉布斯自由能函数法,对TiB2材料的氧化进行了热力学分析.热力学计算结果表明: TiB2材料从室温到高温均可以与氧发生反应生成TiO2;当温度T<1450 K时,氧化产物为TiO2固相和B2O3液相,在氧化行为上表现为氧化增重;当温度T>1450 K时,由于B2O3蒸气挥发,在材料中留下孔隙,增加了TiB2材料与氧气的接触面积,TiB2材料的氧化进程加速,此时,TiB2材料的抗氧化性逐渐下降;在PB2O3=101325 Pa的条件下,TiB2材料由"钝化氧化"向"活化氧化"的转变条件为T=1450 K;在氧化性气氛下,氧化反应的产物为TiO2,而随着氧分压降低,Ti4O7、Ti3O5、Ti2O3、TiO等氧化产物均有可能出现,尤其是在氧分压很低的情况下,TiO生成的可能性增大.  相似文献   

4.
以30μm TiO2(w(TiO2)>99.8%,金红石型)、50 μm B2O3(w(B2O3)>99.5%)及10μm石墨粉(w(C)>99%)为原料,按n(TiO2):n(B2O3):n(C)=1:1:5进行配料后放入不锈钢球磨罐中抽真空球磨24 h,然后将反应混合物移入石墨坩埚内置于热压炉中,分别在1 250、1 350、1 400、1 500、1 600、1 700℃保温4 h进行反应.对以TiO2、B2O3、石墨粉为原料合成TiB2的反应体系进行了热力学计算,并对反应产物进行XRD与SEM分析.热力学计算表明,上述3种原料通过碳热还原反应合成硼化钛的反应开始温度为1 556 K.而合成产物的XRD分析表明,生成硼化钛的开始温度为1 350℃以上.碳热还原TiO2和B2O3合成TiB2的反应机理应为C还原TiO2,其中间产物为Ti3O5、Ti2O3、TiO,然后这些中间产物与B2O3一起逐渐被C还原生成TiB2.SEM分析表明,TiB2颗粒呈不规则短柱状,粒度为5~10m;当反应温度达到1 700℃以上时,硼化钛晶粒有长大的现象.  相似文献   

5.
马爱琼  蒋明学 《硅酸盐通报》2012,31(6):1571-1575
在碳管炉内,碳热还原TiO2与B2O3合成了TiB2粉体.采用XRD、SEM、TG-DSC等分析技术,研究了碳热还原法合成TiB2时B2O3的加入量、还原剂C的加入量及还原剂的种类对合成TiB2产率的影响.研究表明,为提高TiB2的合成产率,原料配比中B2O3和C应适当过量,最佳的原料配比(物质的量)为:TiO2∶ B2O3∶C=1∶2∶5.5;在炭黑、活性炭和石墨三种碳源的选择上,以炭黑的还原效果最佳.  相似文献   

6.
以锆英石、氧化硼、活性炭为原料,采用碳热还原合成工艺制备了ZrB2—SiC复合粉体,并对合成过程进行了热力学分析。考察了反应温度及原料配比对碳热还原合成ZrB2—SiC复合粉体的物相的组成、含量和显微结构的影响。结果表明:提高反应温度有利于ZrB2—SiC复合粉体的合成,适当过量氧化硼及活性炭有利于ZrB2—SiC复合粉体的合成。合成ZrB2—SiC复合粉体的最优参数为:当ZrSiO4、B2O3和C的摩尔比为1∶2∶12,在1 773K保温3h,可得到几乎纯相的ZrB2—SiC复合粉体。  相似文献   

7.
熔盐中镁热还原合成二硼化钛纳米粉体   总被引:1,自引:0,他引:1  
以二氧化钛、硼粉、三氧化二硼、钛粉为原料,金属镁粉为还原剂,在NaCl—KCl熔盐中利用镁热还原法合成了TiB2纳米粉体。研究了TiO2—Mg—B和B2O3—Mg—Ti体系在熔盐中合成TiB2粉体的反应过程及机理,分析了两体系中合成TiB2的起始温度、最佳温度、形貌和尺寸的差异,对粉体的物相组成及显微结构进行了表征。结果表明:2个体系合成TiB2的起始温度均为800℃,TiB2的结晶性及纯度随温度升高而提高,最佳合成温度均为1 000℃。经1 000℃保温4h后,TiO2—Mg—B体系合成的TiB2粉体形貌不规则,颗粒尺寸约为30~100nm;而在相同条件下,采用B2O3—Mg—Ti体系合成的立方形态的TiB2粉体颗粒尺寸约为40~200nm。B2O3在NaCl—KCl熔盐中的溶解度较TiO2高,更易被金属Mg还原,因此,B2O3—Mg—Ti体系合成的TiB2结晶性优于TiO2—Mg—B体系。  相似文献   

8.
碳热还原法合成B4C及B4C/TiB2复合粉末的研究   总被引:1,自引:0,他引:1  
以工业硼酸、碳黑及TiO2为原料,经碳热还原法于1650~1800℃合成了纯B4C及TiB2含量分别为10~20vol%的B4C/TiB2复合粉末,同时确定了原料B/C摩尔比,进行了热力学分析并探讨了球磨工艺、TiB2的生成对粉末合成的影响。结果表明:原料及产物的B/C摩尔比分别为4.4和3.98~4.03,产物纯度均大于99wt%;湿法球磨可迅速消除粉末的团聚现象,降低原始粉末的粒度,TiB2颗粒较均匀分散于B4C中,呈近圆片状,TiB2的生成有助于降低B4C/TiB2的合成温度,由1800℃降至1650℃,并改善了B4C的颗粒形状,由无定形态变为近球形及条状。  相似文献   

9.
以葡萄糖(C6H12O6·H2O)和氢氧化铝(Al(OH)3)为起始原料,利用碳热还原法在氮气(N2)气氛下合成AlN-Al2O3复合粉末.研究了反应温度对AlN-Al2O3复合粉末的物相组成和显微形貌的影响,并探讨了AlN-Al2O3复合粉末的合成反应机理.采用X-射线衍射仪(XRD)、激光粒度分析仪(LPSA)、扫描电镜(SEM)等手段对产物进行表征.结果表明:AlN-Al2O3复合粉末适宜的合成条件为在1500℃保温2h.在1500℃下合成的AlN-Al2O3复合粉末主要有少量的片状颗粒和大量的近似球状颗粒所构成,大部分粒径在100~500nm之间的颗粒发生聚集或堆积形成0.5~1.5μm的大颗粒.在碳热还原反应过程中,Al(OH)3原料分解生成的Al2O3首先生成金属铝蒸汽和Al2O气体氧化物,然后进一步氮化生成AlN.  相似文献   

10.
原位合成TiB2-SiC基复相陶瓷及其高温摩擦学性能的研究   总被引:4,自引:0,他引:4  
本研究以SiC为基体,用TiC和B4C为原料,采用新的反应原理生成TiB2,原位合成了TiB2-SiC基复相陶瓷,提高了SiC陶瓷的物理性能和高温摩擦学性能:随着材料中TiB2物相重量百分比的增加,材料的高温摩擦学性能提高。在以下摩擦环境参数下TiB2(wt25%)SiC基复相陶瓷自对偶在空气中高温摩擦磨损性能较好,呈现良好的高温自润滑性能:在升温状态下、空气中、环境温度为200℃-1000℃、外加载荷为0.2MPa、摩擦速度为0.3m/s,温度和外加载荷对TiB2-SiC基复相陶瓷自对偶比磨损率的影响具有依存性。高温摩擦氧化是TiB2-SiC基复相陶瓷自对偶高温磨损主要机理,磨损试样磨损断面包含摩擦氧化层、过渡层和基体亚表面三层。氧化层和过渡层接触紧密;磨屑具有典型包裹结构。  相似文献   

11.
纳米Si3N4-SiC(Y2O3)复合粉末的氨解溶胶-凝胶法合成   总被引:9,自引:0,他引:9  
以硅溶胶、尿素和碳黑为原料,经氨解溶胶-凝胶、碳热还原法合成了纳米Si3n4-SiC复合粉末。通过在硅溶胶中引入Y(NO3)3,合成了Si3n4-SiC-Y2O3超细复合粉末,Y2O3的加入有助于降低Si3N4-SiC的合成温度。采用XPS和XRD分析复合粉末中Y的存在状态表明:一部分Y固溶在Si3N4-SiC中,加有一部分以Y2O3形式存在,Si3N4-SiC-Y2O3复合粉末的烧结性能良好。  相似文献   

12.
ZrB2质与TiB2质耐火材料   总被引:7,自引:2,他引:5  
介绍了ZrB2 与TiB2 以及其他一些非氧化物高温材料的性质 ;ZrB2 与TiB2 在高温工业中的应用与预期发展 ;ZrB2 与TiB2 原料与制品的生产 ,包括自蔓延高温合成ZrB2 与TiB2 ;ZrB2 质与TiB2 质复合材料 ,如ZrB2 -SiC ,TiB2-SiC ,ZrB2 -BN ,TiB2 -BN ,ZrB2 -MoSi2 ,TiB2 -MoSi2 ,ZrB2-C ,TiB2 -C ,ZrB2 -B4C ,TiB2 -B4C等。  相似文献   

13.
选用多热源法合成的β-SiC粉体为原料,采用亚临界水热法去除β-SiC粉体中的含Si杂质。通过XRD、SEM、EDS及可见分光光度计等对β-SiC粉体的物相组成、微观结构及Si杂质含量进行表征,重点研究β-SiC粉体中含Si杂质的亚临界水热去除工艺参数优化。结果表明,β-SiC粉体中的含Si杂质主要为SiO2和游离硅(F·Si),而F·Si主要以大颗粒的形式存在。反应浓度增大、反应时间延长和反应温度升高均有利于提高Si杂质的去除率。最佳水热法处理工艺为:液固比5∶2,NaOH浓度4 mol·L-1,反应温度180 ℃,反应时间4 h。在此工艺下,β-SiC粉体中SiO2的去除率达到100%,F·Si的去除率为96.4%。  相似文献   

14.
In order to measure the elastic properties of titanium monoboride (TiB), which are not well known, a Ti/TiB composite with 95% volume fraction of TiB was fabricated by the powder metallurgy route. After compacting mixed Ti+TiB2 powders by a hot unidirectional pressure (1200°C, 25 MPa, 60 min, <10−2 Pa), annealing at 1200°C was performed for 48 h, after which the main phase in the material was TiB. The elastic properties of TiB were directly measured by using the nanoindentation technique. The polycrystalline modulus and hardness of the TiB were 450 and 27.5 GPa, respectively.  相似文献   

15.
彭文斌  赵忠民 《硅酸盐通报》2017,36(10):3273-3277
基于离心热爆反应、难熔液相分离与快速凝固原理,选取(WO3+Al+C)体系辅助(B4C+Ti)反应体系,采用自蔓延离心熔铸工艺可以成功制备出TiB2微纳米晶补强TiC-(Ti,W)C陶瓷基复合材料.将(B4C+Ti)、(WO3+Al+C)两种反应体系依次装填入坩埚中进行SHS离心熔铸实验,发现因W-Ti-C液相动力学粘度的降低、Al2O3液滴迁移路程减小,极大促进Al2O3液滴的Stokes上浮过程,故而显著减小残存于陶瓷基体上的氧化物夹杂含量与尺寸,进而TiB2微纳米片晶诱发的强烈自增韧机制与Al2O3微纳米晶产生的残余应力增韧效应,使得TiB2-(Ti,W)C-TiC陶瓷的弯曲强度、断裂韧性与维氏硬度分别达到(952±25)MPa、(12.6±2.5)MPa·m1/2与(28.6±1.2)GPa.  相似文献   

16.
SiC-Si composite, that is stable in oxidizing atmosphere at 1300°C and has thermal shock resistance, was prepared from a powder mixture of porous β-SiC, which was prepared from rice hulls, and Si metal. To use an SiC-Si composite as a structural support for a high temperature combustion catalyst, the foaming SiC-Si composite form with continuous bubbles was prepared from foaming SiC form and the mixture of the porous β-SiC and Si metal. The foaming SiC form was prepared from the foaming polyurethane form and a β-SiC fine particles. The β-SiC fine particles having an average diameter of 0.3 μm was coated on the foaming polyurethane form. The polyurethane part of the form was burned out and the coating β-SiC was sintered to form the foaming SiC form. The SiC form was coated on the porous SiC and Si metal powder mixtures and was heated at 1500°C in argon to prepare the foaming SiC-Si composite. The foaming composite was stable in an oxidizing atmosphere at 1300°C and was highly resistance to thermal shock. The compression stress of the foaming SiC-Si composite form (175 kg/cm2was about twice that of the a-axis of honeycomb-shaped cordierite (> 85 kg/cm2).  相似文献   

17.
TiB2表面镀铜工艺   总被引:4,自引:0,他引:4  
利用化学镀覆技术成功在TiB2颗粒表面均匀化学镀覆铜。透射电子显微镜观察表明:通过严格的镀前预处理工艺的优化设计以增加活化点,对传统镀液配方的调整以降低镀速,能够成功地在TiB2颗粒表面镀覆一层铜,从而培强了其和铜基体之间的界面结合力,为TiB2在复合材料领域之中的应用打下了坚实基础。  相似文献   

18.
段云彪  赵昆渝  颜丙勇 《云南化工》2003,30(2):13-14,39
利用化学方法对机械合金化制备的TiB2 和MgO粉末进行分离 ,以便得到高纯TiB2 。结果表明可以利用盐酸对TiB2 和MgO粉末进行分离 ,分离后仅含有微量MgO杂质  相似文献   

19.
The effects of planar-defect density in a β-SiC starting powder and the addition of α-SiC seeds to that powder on microstructural evolution in liquid-phase-sintered (LPS) SiC have been studied separately. Planar-defect density is altered by appropriate heat treatment of an as-received β-SiC starting powder. It was found that a decrease in the planar-defect density in the powder retards the β→α phase transformation rate. It is proposed that, because nucleation of α-SiC occurs on the planar defects present in the β-SiC starting powders, the nucleation rate and the attendant rate of transformation decrease with a reduction in planar-defect density. Consequently, this reduces the frequency of formation of elongated β/α composite grains, resulting in lower average aspect ratios, as the initial untransformed β-SiC grains coarsen in an equiaxed manner. In contrast, addition of external α-SiC seeds has no effect on the β→α phase transformation rate, although a significant reduction in the average aspect ratio occurs. It is proposed that preferential equiaxed coarsening of the α-SiC seeds over elongated coarsening of β/α composite grains occurs, resulting in a reduction of overall coarsening anisotropy.  相似文献   

20.
This study investigated the effect of incorporating α-phase silicon carbide (α-SiC) powder as a secondary phase on the fracture strength of porous reaction-bonded silicon carbide with a surface layer (porous RB-SiC) mainly based on β-phase SiC (β-SiC). The porous RB-SiC was composed of a highly porous body and surface layer with lower porosity than the porous body. α-SiC powder was incorporated into the porous RB-SiC through powder-based direct foaming followed by reaction sintering. The fracture strength and porous structure of the porous RB-SiC were investigated by varying the amount and particle size of the α-SiC powder. The porous structure composed of β-SiC grain in the porous RB-SiC was strongly influenced by the incorporation of α-SiC powder. Fracture strength of porous RB-SiC increased from 27.1 ± 1.4 MPa (without α-SiC powder) to 39.9 ± 2.0 MPa as maximum by incorporation of α-SiC, resulting in fracture strength improvement by up to 1.5 times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号