首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
杨杨 《耐火与石灰》2010,35(1):39-43
曾使用中度低温热处理工艺借助于低体积分数的复合烧结剂(例如MgO和CaO与Y2O3或Nd2O3合成)合成针状氮化硅(β-Si3N4)籽晶。人们已经研究了热处理循环工艺以及添加剂组分对冷等静压球团和一次密压粉末中α→β—Si3N4的相转变的影响。对于一次密压粉末在-0.1MPa氮气中于1625℃温度下进行4h的热处理,可以发生充分的相转变。使用简单的稀释HF在室温下浸渍,使用复合氧化物添加剂可以使籽晶从热处理材料中释放出来。得到的β—Si3N4籽晶显示出了小尺寸的分散,平均长度与直径之比约为4:1。  相似文献   

2.
以MgO–Al_2O_3–CeO_2复合体系为烧结助剂,采用放电等离子烧结工艺制备氮化硅陶瓷。研究了MgO–Al_2O_3–CeO_2含量、烧结温度对氮化硅陶瓷显微结构及力学性能的影响;探讨了复合烧结助剂作用下氮化硅陶瓷的烧结机理。结果表明:当混合粉体中Si_3N_4、MgO、Al_2O_3和CeO_2的质量比为91:3:3:3、烧结温度为1600℃时,氮化硅烧结体相对密度(99.70%)、硬度(18.84GPa)和断裂韧性(8.82MPa?m1/2)达最大值,晶粒以长柱状的β相为主,α-Si_3N_4→β-Si_3N_4相转变率达93%;当混合粉体中Si_3N_4、MgO、Al2O3和CeO_2的质量比为88:4:4:4、烧结温度为1600℃时,烧结体抗弯强度(1086MPa)达到最大值。  相似文献   

3.
采用直接起泡法,通过氮化硅颗粒稳定泡沫机制制备氮化硅泡沫陶瓷,研究了烧结温度、保温时间、烧结氮气压、烧结助剂(Al2O3+Y2O3)添加量以及 Al2O3与 Y2O3质量比对氮化硅泡沫陶瓷中晶须生长的影响,分析了泡沫陶瓷的微观结构。结果表明:通过工艺条件的控制可得到由长柱状β-Si3N4晶粒构成的显微结构;当烧结温度为 1750 ℃、保温时间为 4 h、烧结气压为 0.9 MPa、烧结助剂添加量为 6% (质量分数)、Al2O3与 Y2O3质量比为 1:1 时,β-Si3N4晶粒的长径比达到 12 以上  相似文献   

4.
以硅粉和氮化硅铁颗粒为原料,经高纯氮气气氛下烧结,制备出氮化硅/氮化硅铁复合材料。将氮化硅/氮化硅铁复合材料试样分别在1 500、1 600、1 700℃氮气气氛下重烧,探究其高温稳定性。结果表明:当重烧温度为1 500℃时试样中存在的物相有β-Si_3N_4、α-Si_3N_4、Si_2N_2O、SiC以及Fe3Si;当重烧温度达到1 600℃时,β-Si_3N_4含量增加,Fe_3Si、Fe_5Si_3、FeSi_3种硅铁合金共存,α-Si_3N_4、Si_2N_2O消失;当重烧温度上升到1 700℃时,β-Si_3N_4含量显著下降并重新出现α-Si_3N_4,Fe_5Si_3和FeSi相共存,Fe_3Si相消失。结合热力学计算推断反应机理为:当重烧温度从1 500℃上升到1 600℃时,α-Si_3N_4、Fe–Si熔体中的Si以及Si_2N_2O均向β-Si_3N_4转变,导致β-Si_3N_4含量增加。当重烧温度上升到1 700℃过程中,熔融硅铁的存在加速了Si_3N_4的分解,导致β-Si_3N_4含量减少;试样冷却过程中,Si(l)、Si(g)将重新氮化形成氮化硅,使α-Si_3N_4重新出现。SiC在较高的温度下比Si_3N_4稳定,其反应的C源为结合剂中的残C,以及气氛中的CO。随温度升高,复合材料中Fe–Si合金的稳定顺序依次为:Fe3Si→Fe_5Si_3→FeSi。  相似文献   

5.
刘宁  文有强  顾雷  郭露村 《硅酸盐学报》2012,40(3):366-367,368,369,370,371,372
采用无压烧结工艺制备高比强度SiC/β-sialon复相陶瓷。研究了原料组成和第一阶段反应温度对合成β-sialon相的影响,分析了氧化物添加剂和第二阶段烧结温度对材料烧结性能和力学性能的影响。利用X射线衍射仪、扫描电子显微镜以及万能试验机表征样品的物相组成、微观结构和力学性能。结果表明:用10%(质量分数,下同)的苏州土部分替代Al2O3和SiO2能有效促进β-sialon相的生成,在1500℃保温2h合成出无杂相的β-sialon相;复合添加5%ZrO2和5%Y2O3可促进样品的烧结致密化。当温度为1650℃时,样品的体积密度为2.90g/cm3,抗弯强度和断裂韧性分别达到375MPa和3.24(MPa·m1/2),弯曲比强度为1.29×105(N·m)/kg,比Al2O3提高了40%以上。  相似文献   

6.
以α-Si_3N_4粉和黑刚玉为原料、Gd_2O_3为烧结助剂,采用无压烧结工艺制备了O’-Sialon/Si_3N_4复相陶瓷材料,研究了Gd_2O_3添加量和烧结温度对样品性能、相组成和显微结构的影响,探讨了Gd_2O_3对复相陶瓷的作用机理。结果表明:复相陶瓷主晶相为α-Si_3N_4、β-Si_3N_4和O’-Sialon,添加Gd_2O_3一方面可在高温烧结过程中形成液相,促进α-Si_3N_4的"溶解–析出"过程,有利于α-Si_3N_4向β-Si_3N_4的晶型转变以及β-Si_3N_4晶粒的生长;另一方面可促进α-Si_3N_4与Al_2O_3和Si O_2的固溶反应,生成O’-Sialon相,使样品中O’-Sialon含量增加。当Gd_2O_3添加量为6%(质量分数)时,经1 600℃烧结的样品SN-G6性能最佳:气孔率为23.29%;体积密度为2.31 g·cm~(–3);抗折强度达到105.57 MPa。  相似文献   

7.
采用直接起泡法,通过氮化硅颗粒稳定泡沫机制制备氮化硅泡沫陶瓷,研究了烧结温度、保温时间、烧结氮气压、烧结助剂(Al2O3+Y2O3)添加量以及Al2O3与Y2O3质量比对氮化硅泡沫陶瓷中晶须生长的影响,分析了泡沫陶瓷的微观结构。结果表明:通过工艺条件的控制可得到由长柱状β-Si3N4晶粒构成的显微结构;当烧结温度为1750℃、保温时间为4 h、烧结气压为0.9 MPa、烧结助剂添加量为6%(质量分数)、Al2O3与Y2O3质量比为1:1时,β-Si3N4晶粒的长径比达到12以上。  相似文献   

8.
江涌  祁宏颖  黄振坤 《佛山陶瓷》2008,18(12):21-23
用自蔓延高温燃烧法合成制备的两种不同α相含量的氮化硅粉料α6(60%α)与α9(87%α),按α6/α9的不同比例混合组成三组不同d相含量的粉料,以Re(Y,La)2O3-AlN为烧结助剂,采用无压液相烧结的方法,考察了不同α6/α9比例的粉料对烧结密度、收缩率、烧失率、硬度的影响。结果表明:α6含量越多,烧结特性越好;密度和硬度值越高,烧失率也变大。当α6/α9=3:1时,试样相对密度为99.42%、烧失率为2.34%、线收缩率各向异性;硬度为11.72GPa。  相似文献   

9.
崔向红  耿振华 《硅酸盐通报》2017,36(11):3659-3663
通过传统固相法制备了α-CaSiO3/Al2O3-B2O3微波介质陶瓷,研究了不同B2 O3添加量对α-CaSiO3/Al2O3陶瓷烧结特性、相组成及微波介电性能的影响,通过XRD、SEM和网络分析仪对其相结构、微观形貌和微波介电性能进行了表征.结果表明:B2 O3的添加使陶瓷的烧结温度从1375℃降低到了1100℃,并使主晶相由α-CaSiO3相变为β-CaSiO3相;当B2 O3的添加量为3wt%时,在1100℃烧结2 h可获得最佳微波介电性能:εr=6.21,Q×f=30471 GHz,τf=-34.58 ppm/℃.  相似文献   

10.
氮化硅(含LiF-MgO-SiO_2)陶瓷的低温热压烧结   总被引:1,自引:1,他引:1  
为了研制纤维补强氮化硅复合材料,避免纤维与基体的反应而受到损害,必须使氮化硅的热压处理温度降低到两者共存所允许的程度。添加LiF-MgO-SiO_2可以使氮化硅的热压烧结温度降低到1450℃,而致密度达到理论密度的99%以上。 本文初步探索了含LiF-MgO-SiO_2的氮化硅陶瓷低温热压烧结机理,发现它是适合于R.L.Coble提出的在热压烧结中晶界扩散蠕变过程的。考虑到气孔及模壁对有效压力的影响,同时把晶界层厚度理解为界面液相层厚度,可将该过程的方程调整为: ln(1-ρ)=-K(Wσ_A/T)t+ln(1-ρ_0)其中ρ为相对密度;K是包含有晶界扩散系数的常数;σ_A是外加压力;W是液相层厚度;t是时间;T是绝对温度。 含LiF-MgO-SiO_2的氮化硅的热压烧结实验结果与上述方程所预示的基本吻合,同时也符合于W.D.Kingery的有液相参与下的热压烧结方程。通过这些实验结果的处理,可以认为氮化硅的低温热压烧结可以用溶解-扩散-沉淀过程来说明。而当温度提高时,烧结速率的控制则逐渐从溶解-沉淀向扩散转移。同时,在氮化硅的低温热压烧结过程中,并不必须伴随有α到β氮化硅的相变。在低温热压达到致密化之后,在氮化硅试样中α相仍保留为主相。  相似文献   

11.
为了研究高温条件下Al2O3-C体系中氮化硅铁的状态,以闪速燃烧合成氮化硅铁、炭黑、刚玉粉为原料,将试样在高温炉中分别加热至1 450、1 500、1 600℃保温5 h,急速水冷后,对其进行XRD和显微结构分析。结果表明:1 450℃烧后试样的物相包含β-Si3N4、α-Si3N4、α-Al2O3和Fe3Si;1 500℃烧后试样的物相为β-Si3N4、SiC、α-Al2O3和Fe3Si;1 600℃烧后试样中Si3N4大部分转变为SiC,其他物相未发生变化。在升温过程中,氮化硅逐渐转化为碳化硅,材料结构致密。  相似文献   

12.
崔珊  王芬 《陶瓷》2010,(8):7-10
以自蔓延高温合成的AIN粉体为原料,Y2O3、Dy2O3、La2O3为添加剂,采用真空热压烧结工艺,实现了含有添加剂的AIN陶瓷体的低温烧结;研究了烧结温度对AIN烧结性能的影响。用XRD、SEM对AIN高压烧结体进行了表征。研究表明:粉体粒径、烧结工艺、烧结助剂对AIN陶瓷低温烧结真空热压烧结性能有很大影响;含烧结助剂的真空热压烧结能够有效降低AIN陶瓷的烧结温度并缩短烧结时间,使烧结体的结构致密。烧结温度1550℃条件下,真空热压烧结90min时,得到的AIN陶瓷的致密度最高。  相似文献   

13.
液相烧结SiC陶瓷   总被引:1,自引:0,他引:1  
采用Al2O3、Y2O3为助烧剂,热压烧结获得了致密的α-SiC和β-SiC陶瓷,研究了起始粉末的性能对烧结体的物相组成和显微结构的影响。实验结果表明,Al2O3、Y2O3原位形成了YAG,材料以液相烧结机制致密化,并通过溶解和再析出机制,促进晶体生长。物相分析表明,β-SiC陶瓷粉末在烧结过程中发生了β→α的相变。显微结构观察显示,β-SiC陶瓷中生成了长柱状晶粒。  相似文献   

14.
赵君红  王瑞生 《陶瓷》2011,(5):15-17
ZrO2p(3Y)/BN-SiO2陶瓷复合材料是以h—BN、非晶SiO2、ZrO2粉体为原料烧结而成,随着烧结温度的不同,所得产物的结构性能也会因此改变,笔者从选择原材料着手,通过试验来验证,陶瓷复合材料热震后表面形貌有何不同。  相似文献   

15.
采用纳米级的A1N粉并以Y2O3-CaF2作烧结助剂于1600℃下制备A1N陶瓷,对AlN陶瓷物相组成、相对密度、微观结构和热性能进行了表征,针对A1N陶瓷烧结过程中易氧化的问题,分析了氮化铝陶瓷在烧结过程中氧化的机理,提出了防止A1N陶瓷制备过程中氧化的措施。研究表明:将A1N坯体置于含有一定量碳粉的A1N埋粉中于N2气氛下烧结,生成还原性气体CO,有效避免了A1N烧结过程中的氧化问题。其中添加3wt%Y2O3-2wt%CaF2作烧结助剂,1600℃常压条件下制备了高热导率的致密A1N陶瓷。  相似文献   

16.
以Si粉和Al2O3空心球为原料,采用反应烧结后高温烧结法制备了多孔β-sialon/Si3N4陶瓷。X射线衍射结果表明:在0.25MPa的氮气压力下于1300℃反应烧结2h后在0.25MPa的氮气压力下1700℃及1750℃高温烧结2h,制备的样品的组成为β-sialon(Si6-zAlzOzN8-z,z=3)及β-Si3N4,随着烧结温度由1700℃升高至1750℃,β-sialon的相对质量分数由29.9%增加至56.8%。场发射扫描电镜观察结果表明:1750℃高温烧结样品的显微结构由大孔β-sialon及疏松的β-Si3N4基体组成。1750℃高温烧结后,样品的气孔率为28%,抗弯强度为92.5MPa。  相似文献   

17.
以α-Si3 N4为原料,Y2 O3和MgO为复合烧结助剂,通过无压烧结制备出氮化硅陶瓷。为了优化实验配方和工艺参数,采用正交实验研究了成型压力、保压时间、保温时间、烧结温度、烧结助剂含量以及配比对氮化硅陶瓷气孔率和抗弯强度的影响规律。结果表明,影响氮化硅陶瓷气孔率的主要因素是烧结助剂含量和配比,而影响其抗弯强度的主要因素是烧结助剂配比和烧结温度。经分析得出,最佳工艺参数为成型压力16 MPa,保压时间120 s,保温时间2 h,烧结温度1750℃,烧结助剂含量12wt%,烧结助剂配比1∶1;经最佳工艺烧结后的氮化硅陶瓷,相对密度为94.53%,气孔率为1.09%,抗弯强度为410.73 MPa。  相似文献   

18.
岳建设  王红洁  乔冠军 《硅酸盐学报》2012,40(4):489-490,491,492
以硅粉为原料,氧化铝空心球作为造孔剂,Y2O3作为烧结助剂,采用反应烧结法制备了具有宏观孔洞结构的多孔β-SiAlON陶瓷。SiAlON在1 300℃氮化时开始形成,于1 600℃烧结后转化完全。随着温度的增加,基体微观结构从多孔变成致密体。然而,随着温度的提高,在孔内壁,晶粒逐渐变得粗大且形成多孔结构。微观结构的变化与高温下通过烧结助剂作用而形成的液相有着紧密的联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号