首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《塑料》2015,(4)
将聚磷酸铵(APP)与可膨胀石墨(EG)进行复配后添加到环氧树脂(EP)中,以间苯二胺(PDA)为固化剂,制备阻燃环氧树脂固化物,通过极限氧指数(LOI)、垂直燃烧(UL-94)和热重分析(TGA)测试研究了材料的阻燃性能、热降解行为,通过锥形量热(CONE)测试研究了材料的燃烧行为,通过扫描电镜(SEM)研究了材料炭层的形貌,同时还研究了APP与EG的不同配比对EP材料阻燃性能的影响。结果表明:当APP与EG的质量比为3∶2、添加量为5%时,阻燃EP材料通过了UL-94 V-0级,LOI值达到了29.0%。TGA测试结果表明:阻燃剂APP及EG的加入明显地改变了材料的热降解行为,促进了环氧树脂材料的提前降解和成炭,降低了材料的热降解速率,材料在700℃时的残炭量由14.6%提高到了29.9%。CONE测试结果表明:阻燃剂的加入明显降低了材料的热释放速率(HRR)和总热释放量(THR)。SEM测试结果表明:阻燃材料燃烧后形成了致密均一的炭层,能很好地阻止氧气和热量进入到材料的内部,同时减少可燃气体的逸出,从而抑制了基体树脂的进一步降解和燃烧,提高了材料的阻燃性能。  相似文献   

2.
通过熔融共混法制备了9种PMMA复合阻燃材料,对其进行小尺寸的水平火蔓延实验研究,对比分析了可膨胀石墨(EG)和碳纳米管(Carbon Nanotube, CNTs)阻燃剂的加入对材料燃烧特性的影响,主要研究了火蔓延速度、火焰形态、固相温度、质量损失速率等火蔓延特性参数变化规律。结果表明,EG能产生阻燃效应,随EG含量增加,复合材料的火蔓延速度、质量损失速率、表面热流密度均有所减小;CNTs表现出拮抗和协同阻燃的复合效应。EG含量较低时,添加1% CNTs反而会使火蔓延速率加快;随着EG含量增加,拮抗作用逐渐消失,最后表现为协同阻燃,原因是CNTs的高热导率、“灯芯效应”促进表面燃烧作用和EG/CNTs体系阻燃性之间存在竞争关系;添加EG和CNTs前后,火蔓延过程中表现出明显不同的燃烧行为,未添加阻燃剂前PMMA会产生熔融滴落物积聚成池火,表现为明显的热塑性材料燃烧特征;加入EG和CNTs后则会形成碳层,表现为明显的可碳化材料燃烧特征。  相似文献   

3.
对比了3种典型的添加型磷酸酯,亚磷酸二甲酯(DP)、甲基膦酸(5乙基2甲基2氧代1,3,2二氧磷杂环己5基)甲基甲基酯(EMD)和甲基膦酸二甲酯(DMMP)分别与可膨胀石墨(EG)复合阻燃硬质聚氨酯泡沫(RPUF),研究了3种不同结构的磷酸酯对材料阻燃性能的影响。结果表明,在3种磷酸酯添加相同质量的情况下,添加DMMP和DP样品的极限氧指数明显高于添加EMD的,且添加DMMP样品的热释放速率峰值和热释放总量最低,在3种磷酸酯中具有最好的阻燃行为表现;DP由于在燃烧过程中发生氧化反应而加剧了体系放热从而降低了阻燃效果;EMD通过分解首先释放DMMP,但由于其磷含量偏低,因此阻燃效率低于DMMP;DMMP由于具有磷含量高、气相和凝聚相阻燃效率高等优点与EG配合产生了最佳的阻燃效果。  相似文献   

4.
聚苯乙烯泡沫塑料(E PS)应用广泛,但是有易燃的缺点,而可膨胀石墨(EG)具有阻燃性能.目前,学者主要研究了EG与其它阻燃剂的配比和种类对复合EPS阻燃材料的影响,很少系统探究石墨的特性如石墨的粒级、EG的添加量、膨胀体积对复合EPS阻燃材料的性能的影响.通过EG包覆改性EPS制备EG/EPS复合阻燃材料,确定EG的添加量、膨胀体积、原料粒级对EG/EPS复合材料的性能的影响,为阻燃剂EG的应用提供依据.试验确定的最佳条件为:EG添加量为10wt%;膨胀体积为120 mL·g-1;EG原料粒级-0.100 mm +0.074 mm.由SEM表征、热重分析可知,高温燃烧时,EG吸热分解吸收大量热源,降低EPS与热源的接触;同时EG在材料表面形成六边形骨架,起到隔绝热源的作用.  相似文献   

5.
MP/OMMT对脱醇型RTV阻燃硅橡胶性能的影响   总被引:1,自引:0,他引:1  
以α,ω-二羟基聚二甲基硅氧烷(107硅橡胶)、甲基三乙氧基硅烷、三聚氰胺磷酸盐(MP)和纳米有机蒙脱土(OMMT)为原料,制备了脱醇型室温硫化(RTV)阻燃硅橡胶。研究了MP/OMMT配比对脱醇型RTV硅橡胶阻燃性能、动态燃烧性能和机械性能、热稳定性的影响,用扫描电镜(SEM)考察了MP、OMMT在RTV硅橡胶中的分散情况。锥形量热仪和极限氧指数测试结果表明,随着OMMT用量的增多和MP用量的减少,硅橡胶的阻燃性能没有显著的变化;热失重分析表明,OMMT的添加使硅橡胶的初始分解温度明显提高,大大提高了硅橡胶燃烧残渣的生成量;机械性能测试表明,OMMT的增多能明显提高硅橡胶的机械性能。与只添加MP的硅橡胶相比,当MP和OMMT各添加20份时,硅橡胶的极限氧指数下降0.6%,初始分解温度提高了95℃,拉伸强度、硬度、撕裂强度分别提高48.6%、4.7%、50.9%;此时的SEM分析表明,OMMT能在硅橡胶中均匀分散,且燃烧残渣表面变得平整、坚硬、致密。即在此配比下硅橡胶能在保持良好阻燃性的同时提高其机械性能。  相似文献   

6.
采用一步法制备了不同含量可膨胀石墨(EG)阻燃聚氨酯半硬质泡沫塑料(PUF)。通过扫描电子显微镜观察了纯PUF和EG改性PUF的泡孔结构、EG粒子在泡沫内的分布状态和泡沫燃烧后泡孔和炭层形貌。结果表明,添加EG粒子后,EG粒子附着在泡孔表面,泡孔形貌改变;燃烧后,纯PUF泡孔严重炭化变形,添加EG粒子的泡沫表面覆盖一层浓密的"蠕虫状"石墨炭层。采用垂直–水平燃烧试验和极限氧指数(LOI)试验对PUF的阻燃性能进行了测试。试验结果表明,随着EG用量的增加,PUF的阻燃性能增强,EG添加量为12%时,水平阻燃等级达到HF–1级,LOI达到23.9%,有较好的阻燃效果。  相似文献   

7.
探索了一种聚丙烯木塑复合材料高效无毒、环境友好、价格便宜的阻燃方法。通过向其中添加无机硅酸盐与有机硅橡胶组合物加工成复合材料,使其在燃烧时表面形成陶瓷结构起到防火隔热的作用,从而提高材料的阻燃性能。采用垂直燃烧测试、氧指数测试、锥形量热测试、扫描电镜和热重分析等一系列研究手段,对复合材料燃烧前后的性能与结构进行比较分析。结果表明,陶瓷化组合物的添加可以提高聚丙烯木塑复合材料的阻燃效率,延缓热降解过程,有效地抑制热释放速率和烟释放量以及可燃气体的逸出。  相似文献   

8.
《塑料科技》2016,(10):66-70
将可膨胀石墨(EG)与聚磷酸铵(APP)复配并添加至聚苯乙烯(PS)基体中,制备了PS/EG/APP阻燃复合材料。通过极限氧指数(LOI)、水平垂直燃烧(UL 94)测试,以及热重分析(TG)和扫描电镜分析(SEM)对PS/EG/APP阻燃复合材料的阻燃性能和热稳定性进行了检测,并优化了该材料配方。结果表明:复合阻燃剂EG/APP的加入,使得体系的LOI值与热稳定性均明显提高。其中当复合阻燃剂EG/APP的添加量为30 phr,且质量比为3:1时,阻燃体系的LOI值可达到31.8%,而单独添加同量EG或APP的阻燃体系,其LOI值仅为29%和20.8%,这说明EG与APP之间存在协同效应。  相似文献   

9.
将含镍金属有机框架材料(Ni-MOF)与焦磷酸哌嗪(PPAP)复配后添加到环氧树脂(EP)中,通过极限氧指数(LOI)、垂直燃烧(UL 94)及锥形量热(CONE)测试研究了材料的阻燃性能及烟释放行为。结果表明,添加6%(质量分数,下同)的PPAP时,材料的LOI值为27.9%,垂直燃烧测试通过了UL 94 V-0级;当PPAP与Ni-MOF以质量比99∶1混合,总添加量为5%时,材料的LOI值达到29.3%并通过了UL 94 V-0级;极少量Ni-MOF的加入,有效提高了材料的阻燃效率。CONE测试表明,在相同阻燃剂添加量下,EP/PPAP/Ni-MOF材料的热释放速率、总热释放量、烟释放速率及总烟释放量,与EP/PPAP材料相比均得到了明显降低;Ni-MOF的引入,降低了材料的燃烧强度,减少了烟气的释放;Ni离子与PPAP受热分解形成的磷酸及多聚磷酸发生交联,将更多的磷留在了凝聚相中,促进了材料形成更加丰富、强度更高的炭层,有效抑制EP燃烧过程中热量和烟气的释放,从而提高了EP材料的火安全性能。  相似文献   

10.
将可膨胀石墨(EG)与P-N膨胀阻燃剂(IFR)复合阻燃EVA树脂,通过氧指数(OI)、垂直燃烧测试(UL94)、锥形量热仪(CONE)研究了EG与IFR复合阻燃EVA的协同效应。结果表明:阻燃剂总添加量为30 phr,随着其中EG含量的增加,OI呈先增加后下降趋势,确定EG:IFR=1:1为最佳配比,OI达到36.6%,UL94为V-0级;EG与IFR复合阻燃EVA,热释放速率曲线呈现"前单峰型",为凝聚相阻燃机理;燃烧后形成的炭层结构较致密,表现出一定的协同作用。  相似文献   

11.
以甲基膦酸二甲酯(DMMP)、10?(2,5?二羟基甲苯)?10?氢?9?氧杂?10?磷酰杂菲?10?氧化物(DOPO?HQ)、可膨胀石墨(EG)和氢氧化铝(ATH)构建了四元阻燃复合体系,并通过热失重分析仪(TG)、锥形量热仪、极限氧指数分析仪等研究了其在硬质聚氨酯泡沫(RPUF)中的阻燃行为。结果表明,四元阻燃体系能够在较宽温度区间内发挥逐级释放的协同阻燃效应;DOPO?HQ能够与EG/DMMP/ATH三元阻燃体系形成加合阻燃效应,使得RPUF复合材料的极限氧指数(LOI)提升至30.8 %;与采用EG/DMMP/ATH三元阻燃体系的RPUF复合材料相比,采用加入DOPO?HQ的四元阻燃体系的RPUF复合材料的热释放速率峰值(PHRR)、总热释放量(THR)、总烟释放量(TSR)均有所下降,残炭率得到了进一步提升,说明DOPO?HQ与EG/DMMP/ATH所构建的四元阻燃体系在成炭性方面具有协同效应;此外,通过扫描电子显微镜(SEM)对残炭进行表征,验证了四元阻燃体系在凝聚相中能够发挥优异的成炭阻隔效应,并能够在燃烧的初期、中期和末期发挥逐级释放阻燃效应。  相似文献   

12.
通过熔融共混法将不同种类和粒径的石墨引入到高抗冲聚苯乙烯(PS?HI)基体中,考察了石墨种类和粒径大小对PS?HI阻燃性能的影响和作用机制.结果表明,天然鳞片石墨(NG)对PS?HI的阻燃作用很小,其粒径大小对阻燃性能的影响并不显著,即使用量达到50%(质量分数,下同)也不能使PS?HI有较好的阻燃性能;与NG相比,可...  相似文献   

13.
基于阻燃剂ANTI?660及抗静电剂单苷酸甘油酯(Gm)制备了聚丙烯(PP)复合材料,采用水平垂直燃烧测试仪、氧指数测试仪、表面电阻测定仪、万能试验机和摆锤式冲击试验机等研究了阻燃剂和抗静电剂对复合材料阻燃性能、抗静电性能和力学性能的影响。结果表明,在阻燃剂含量为18.0 %(质量分数,下同),抗静电剂含量为2.0 %时,复合材料的极限氧指数(LOI)达到26.0 %,UL 94测试达到V?0级,表面电阻下降到1.7×1012 Ω;添加阻燃抗静电体系的复合材料相比于添加纯阻燃剂的复合材料整体力学性能改变不明显,但仍具有较好的综合力学性能。  相似文献   

14.
采用硼酸锌(ZB)与二乙基次膦酸铝(ADP)协同阻燃聚酰胺6(PA6).对其阻燃性能和力学性能进行了探讨,并运用垂直燃烧、极限氧指数、锥形量热、热失重分析、扫描电子显微镜以及拉曼光谱对阻燃机理进行了探究.结果表明,ZB作为协效剂,与ADP的协同阻燃效果显著;当在PA6中添加1.5%(质量分数,下同)ZB和8.5%ADP...  相似文献   

15.
Sodium silicate monohydrate (NSH), glass frits (GF) and aluminum hydroxide (ATH) were incorporated into room temperature vulcanized (RTV) silicone rubber (SR) as char reinforcing materials to improve the fire resistance of intumescent flame retardant silicone rubber. SR composites containing only intumescent flame retardant such as phosphorus nitrogen composite flame retardant (NH2-C) and expandable graphite (EG) were used as comparison samples. Limiting oxygen index (LOI) test, vertical burning test (UL-94), flame resistance test, scanning electron microscopy (SEM) and X-ray diffraction spectroscopy tests, as well as volume variation and compression strength of char residues were used to discuss the effects of the above-mentioned fillers on the fire resistance, char residue strength and char integrity of SR composites. The results showed that SR composite filled with only intumescent flame retardants EG and NH2-C had excellent flame retardancy. After adding ATH, the char residue was relatively dense and had good compressive strength, but its thermal insulation performance was reduced. GF or NSH reduced the flame retardancy of SR composites, but it obviously played a role in binding combustion residues, forming new crystals and improving the stability of char residues.  相似文献   

16.
将磷杂菲/三嗪双基协同阻燃剂(TGD)、甲基膦酸二甲酯(DMMP)、可膨胀石墨(EG)及氢氧化铝(ATH)复配添加到天然橡胶(NR)中制备阻燃NR硫化胶,考察了TGD/DMMP/EG/ATH复配阻燃剂对NR硫化胶的阻燃性能、热稳定性及物理机械性能的影响。结果表明,TGD/DMMP/EG/ATH复配阻燃剂可有效提升NR硫化胶的阻燃性能和热稳定性,并降低燃烧过程中的热释放速率。当TGD/DMMP/EG/ATH复配阻燃剂的用量为60份(质量)时,NR硫化胶的极限氧指数可达28.4%,残炭质量分数可达25.61%,热释放速率可降低95%,总热释放量可降低21%。TGD/DMMP/EG/ATH复配阻燃剂对NR硫化胶的物理机械性能影响不大。  相似文献   

17.
将两种多面体低聚倍半硅氧烷(POSS)分别与9,10?二氢?9?氧杂?10?磷杂菲?10?氧化物(DOPO)基有机磷阻燃剂(D?bp)复配,制备了磷?硅协同阻燃环氧树脂,并对其阻燃、热、力学和动态力学性能等进行分析。结果表明,在磷含量仅为0.25 %(质量分数,下同)时,磷?硅协同阻燃环氧树脂就能达到UL 94 V?0级;当苯基?POSS与D?bp复配时,峰值热释放速率(p?HRR)、总热释放量(THR)和平均有效燃烧热(av?EHC)为313.9 kW/m2、118.2 MJ/m2和23.1 MJ/kg,分别降低了66.6 %、41.4 %和26.9 %;环氧基?POSS与D?bp复配时,能够同时改善磷?硅协同阻燃环氧树脂的阻燃、热、力学和动态力学性能,表现出优异的综合性能。  相似文献   

18.
采用双螺杆挤出机制备了聚酰胺6(PA6)/50 %(质量分数,下同)玻璃纤维(GF)、PA66/50 %GF、PA56/50 %GF 3种高含量GF增强阻燃PA复合材料,对比研究了红磷、溴系、磷氮3种阻燃体系下复合材料的力学性能、阻燃性能和激光打标性能。结果表明,不同阻燃体系对复合材料的力学性能有明显影响,吸水平衡后,PA66复合材料的力学性能保持率最高;PA56复合材料在3种阻燃体系中均表现出比PA6、PA66复合材料更好的阻燃性能;红外激光和紫外激光的打标效果存在明显不同,而在阻燃体系和激光光源相同的条件下,PA6、PA66和PA56 3种PA复合材料的激光打标效果没有明显差异。  相似文献   

19.
通过溶胶?凝胶法制备了硅凝胶微胶囊化聚磷酸铵(MAPP),并通过红外光谱仪(FTIR)、热重分析仪(TG)对MAPP进行了表征;采用熔融共混技术将氢氧化铝(ATH)和MAPP加入到热塑性聚氨酯弹性体(TPU)中,制备出系列阻燃热塑性聚氨酯弹性体(TPU/FR)复合材料,并通过TG、微型量热计(MCC)研究了TPU/FR的热稳定性和燃烧行为。结果表明,在ATH与MAPP总含量为20 %(质量分数,下同)的情况下,相对于TPU/FR1(20 % ATH)复合材料,ATH与MAPP含量分别为5 %、15 %,10 %、10 %和15 %、5 %的TPU/FR复合材料在700 oC下的残炭量分别由16.7 %提高到29.7 %、25.1 %和20.9 %;热释放容量(HRC)分别从327.1 J/(g·K)降低到154.2、164.2和170.1 J/(g·K);对比TPU/FR2(20 % MAPP)复合材料,TPU/FR4(15 % ATH,5 % MAPP)炭渣的致密性和石墨化程度显著提高,表明ATH与MAPP复合具有显著的阻燃协同作用。  相似文献   

20.
采用密胺包覆聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)作为膨胀型阻燃剂(IFR)对不饱和树脂(UP)进行改性,研究了APP、PER和MEL不同复配比例及用量对不饱和树脂基复合材料阻燃性能和力学性能的影响。基于IFR最佳用量,以二乙基次磷酸铝(ADP)为协效剂,研究了ADP用量对IFR/UP阻燃复合材料阻燃性能、力学性能及热稳定性的影响。结果表明,当APP∶PER∶MEL复配比例为4∶1∶1,IFR添加量为15 %(质量分数,下同)时,复合材料综合性能最佳,其极限氧指数为27.4 %,UL 94垂直燃烧达到V?1等级,弯曲强度和冲击韧性分别为100.3 MPa和6.3 kJ/m2;ADP的引入能够进一步提高IFR/UP复合材料阻燃性能,且随着ADP质量分数的增加而增强;当ADP质量分数为2 %时,IFR?ADP/UP复合材料极限氧指数为28.5 %并达到V?0阻燃等级,弯曲强度和冲击韧性分别为110 MPa和7.8 kJ/m2,与IFR/UP复合材料相比,分别提高了9.7 %和23.8 %;ADP能够促进IFR/UP复合材料表面成炭,缓解基体的热降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号