首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《应用化工》2022,(11):2632-2635
对Fenton试剂再生废活性炭的效果进行了详细的研究,考察了Fenton试剂再生废活性炭过程中,pH值、Fe(2+)与H_2O_2的摩尔配比及投加量、再生时间、再生次数、超声波协同Fenton试剂再生废活性炭等因素对废活性炭再生效率的影响。结果表明,Fenton再生废活性炭的最优条件为:pH值为4~8;Fenton体系中Fe(2+)与H_2O_2的摩尔配比及投加量、再生时间、再生次数、超声波协同Fenton试剂再生废活性炭等因素对废活性炭再生效率的影响。结果表明,Fenton再生废活性炭的最优条件为:pH值为4~8;Fenton体系中Fe(2+)和H_2O_2的摩尔配比为1∶19.6,再生时间为10 min;首次再生效率可达到90%以上;再生4次其再生效率>50%;在超声波协同处理下,最佳超声波频率为45 kHz。  相似文献   

2.
为了对比研究Fenton和EDTA-Fe~(3+)、 Fe~(3+)、 Fe~(6+)类Fenton试剂对盐酸四环素的氧化效果,考察了pH值、反应时间、 H_2O_2与铁离子的物质的量比、试剂投加量对盐酸四环素处理效果的影响。结果表明,pH值对EDTA-Fe~(3+)类Fenton氧化效果影响较小,Fenton、 Fe~(3+)和Fe~(6+)类Fenton技术最适pH值范围分别为3~5、 4~7和4。Fenton反应速度最快,20 min基本稳定,其次是EDTA-Fe~(3+)类Fenton反应,Fe~(6+)类Fenton反应速度最慢。Fenton、Fe~(3+)和Fe~(6+)类Fenton反应中H_2O_2与铁离子的最佳物质的量比为10∶1, EDTA-Fe~(3+)类Fenton反应中H_2O_2与铁离子的最佳物质的量比为13∶1。在最优试验条件下,盐酸四环素的降解效率依次为:Fenton> Fe~(3+)类Fenton> EDTA-Fe~(3+)类Fenton> Fe~(6+)类Fenton;4种反应试剂对CODCr的去除效率均不高,处理效果最好的是Fe~(3+)类Fenton试剂,CODCr去除率为21.4%,而EDTA-Fe~(3+)类Fenton处理后CODCr浓度高于进水。紫外-可见吸收光谱表明盐酸四环素在4种反应体系中均迅速下降,有小分子产物生成。4种试剂处理后出水色度均较高,后续需要脱色处理。  相似文献   

3.
染料废水中和处理后,采用活性炭对废水进行预处理,活性炭饱和后的再生亟待解决。采用Fenton试剂对其进行再生,并将再生后的活性炭进行再吸附试验。考察了H_2O_2的投加量,pH值,n(H_2O_2)∶n(Fe~(2+)),再生时间等因素对活性炭的再生效果的影响,得到最适条件。结果表明,Fenton氧化再生活性炭的效果比较好,当双氧水的投加量为4.8 mmol/g,pH值为3.0,双氧水与亚铁离子摩尔比为10∶1,再生时间为1 h时,用再生后的活性炭吸附原废水,水样的COD去除率最大为34%,此时活性炭再生率最高为78%。  相似文献   

4.
以刚果红废水为模拟染料废水,通过Co~(2+)对传统Fenton试剂进行改性研究,探索Co~(2+)与Fe~(2+)摩尔比、H_2O_2的投加量、反应温度及pH值对刚果红去除效果的影响。结果表明:Co~(2+)对传统Fenton试剂降解刚果红废水具有显著的促进作用,使得反应最佳pH值向近中性条件移动。当Co~(2+)与Fe~(2+)摩尔比为1∶1,3%H_2O_2投加量为2 mL,温度为65℃,pH值为7,降解60 min时,改性Fenton试剂对刚果红去除率达到98.2%。正交实验结果说明温度是最主要影响因素。  相似文献   

5.
分别采用Fe~(2+)/H_2O_2、活性炭(AC)/H_2O_2、AC/H_2O_2/Fe~(2+)和再生AC四种体系对染料废水生化出水进行处理,分别考察了不同体系中,H_2O_2的投加浓度、n(H_2O_2)/n(Fe~(2+))、pH和反应时间及再生炭对废水处理效果的影响,并对处理效果进行对比。结果表明AC/H_2O_2/Fe~(2+)体系对废水COD的去除效果最好,去除率为64%,再生AC对废水色度去除率最高为94%。  相似文献   

6.
Fenton氧化法是处理难生物降解的苯胺废水的有效方法。本文以苯胺去除率和COD去除率为指标,采用控制变量法探究Fe~(2+)投加量、H_2O_2投加量以及pH值等因素对Fenton试剂处理模拟苯胺废水的处理效果,分析Fenton试剂降解苯胺的机理。研究结果表明,对于浓度为10μg/mL的模拟苯胺废水,当0.5mol/L的FeSO_4溶液投加量为2.5mL、30%H_2O_2溶液投加量为1.5mL(Fe~(2+)与H_2O_2物质的量比约为10∶1),溶液pH值为3.0左右时,苯胺去除率可达到88%;在投加溶液稀释相同的倍数情况下,相应COD去除率可达到68%,为后续的生化处理提供有效条件。  相似文献   

7.
以Ni~(2+)、总磷和氨氮为考察对象,采用Fenton氧化和沸石吸附联合处理化学镀镍废水。探讨了Fenton破络及协同氧化非正磷酸盐时,H_2O_2的质量浓度、m(Fe~(2+))∶m(H_2O_2)、初始pH值对Ni~(2+)和总磷去除率的影响。另外,研究了沸石吸附氨氮时,沸石量、吸附时间、吸附pH值对氨氮去除率的影响。结果表明:当H_2O_2的质量浓度为6.66g/L、m(Fe~(2+))∶m(H_2O_2)为0.06、初始pH值为3时,破络完全,非正磷酸盐转化率为99.45%;同时,Ni~(2+)和总磷的去除率分别达到99.72%和91.88%。当沸石量为8g/100mL、pH值为7、反应时间为60min时,氨氮的去除率为86.30%。  相似文献   

8.
采用芬顿(Fenton)氧化工艺处理甲基叔丁基醚(MTBE)污染废水。筛选了H_2O_2稳定助剂,在常规Fenton氧化基础上加入无机磷酸盐稳定H_2O_2,探究了初始pH值(pH0值),硫酸亚铁和H_2O_2物质的量之比(Fe~(2+):H_2O_2),磷酸铵和H_2O_2物质的量之比(P:H_2O_2)以及MTBE和H_2O_2物质的量之比(MTBE:H_2O_2)对水中总有机碳(TOC)去除率的影响。研究结果表明:采用磷酸铵为稳定剂,60 min内H_2O_2分解率为9.6%,比不加磷酸铵时降低了约60%;在pH0值为4.8,Fe~(2+):H_2O_2为1:10,P:H_2O_2为1:55,MTBE:H_2O_2为1:40的条件下,TOC去除率比不加稳定剂时提高约20%。添加稳定剂磷酸铵显著提高了Fenton氧化MTBE的处理效果,对Fenton氧化处理有机废水具有重要参考意义。  相似文献   

9.
以柠檬酸单独络合铜离子、柠檬酸单独络合镍离子、柠檬酸综合络合铜镍离子这3种模拟电镀废水为对象,采用芬顿(Fenton)、高锰酸钾(KMnO_4)以及过硫酸钠(Na_2S_2O_8)三种氧化法进行氧化破络,并结合加碱沉淀工艺对铜镍离子进行去除。结果表明,Fenton氧化法最佳反应参数:初始pH值为3.0,Fe~(2+):H_2O_2摩尔比为1:10,30%H_2O_2投加量为0.05 mL/L,反应时间为30 min。KMnO_4氧化法最佳反应参数:初始pH值为3.0~4.0,KMnO_4投加量为37.5 mg/L,反应时间为80 min。Na_2S_2O_8氧化法最佳反应参数:温度为20℃,初始pH值为2~7,S_2O_8~(2-):Fe~(2+)摩尔比为1:1,Na_2S_2O_8投加量为0.1 g/L,反应时间为90 min。对比三种氧化法,可以得出,对pH的适应性:Na_2S_2O_8氧化法KMnO_4氧化法Fenton氧化法;氧化效率:Fenton氧化法KMnO_4氧化法Na_2S_2O_8氧化法;经济效率:KMnO_4氧化法Na_2S_2O_8氧化法Fenton氧化法。因此,对于不同的废水,根据其特点选择合适的处理方法是十分必要的。  相似文献   

10.
结合杭州某化工厂的现有工艺,针对该化工厂污水处理出水COD高于GB 21904-2008《化学合成类制药工业水污染物排放标准》,采用Fenton氧化法对其二沉池出水进行深度处理。通过改变原水pH值、H_2O_2/Fe~(2+)质量比投加量、反应时间等因素,来讨论最佳运行参数。试验结果表明,Fenton试剂对化工废水的处理中,在污水pH为5.0、H_2O_2(质量分数为30%)投加量为16 mmol/L、H_2O_2/Fe~(2+)质量比为1︰2.8、反应时间为60 min时的工艺条件下,COD的去除效果最佳。  相似文献   

11.
在Moldflow分析软件的基础上,对显示器后壳进行仿真研究,以翘曲变形量为质量指标,结合控制变量法进行单因素变动实验,保持注射工艺参数不变,研究显示器后壳底座连接口对制品翘曲变形的影响。对数据进行图表分析,结果表明显示器后壳尺寸定位68.58 cm(27英寸)时,底座连接口选用圆形,连接口位置距离底边26 mm,尺寸为直径21 mm的时候模具翘曲表现更好。  相似文献   

12.
13.
14.
In spinning basalt fibres, the drafting force is in the same range as in spinning of glass fibres. The effect of the drafting force can not be considered in the calculation for the strength and rigidity of the bottom of the spinneret. __________ Translated from Khimicheskie Volokna, No. 5, pp. 47–50, September–October, 2007.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号