首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
通过掺加粉煤灰和偏高岭土制备高强混凝土,研究了其在400℃、600℃、800℃、1000℃高温热处理后的力学性能变化,并与相同强度等级的混凝土进行对比,分析其在高温混凝土领域的应用优势.试验结果表明:普通高强混凝土经600℃热处理后,表观裂纹已经非常明显,而掺粉煤灰和偏高岭土的高强混凝土表观破坏温度为800℃;掺粉煤灰与偏高领土高强混凝土的高温力学性能出现先增长后迅速降低的现象,抗压强度最大值达到125.2 MPa,而普通高强混凝土高温处理后力学性能不断下降;普通高强混凝土随着热处理温度升高,浆体中的水化产物硅钙石、氢氧化钙不断分解,结构劣化严重,而掺粉煤灰和偏高岭土后浆体中会形成大量的耐高温相,而此过程会改善浆体中产生的部分结构缺陷,大幅度延缓力学性能退化,在1000℃热处理后浆体向陶瓷转变;掺粉煤灰和偏高领土的高强混凝土与相同强度等级的混凝土相比,在高温领域内的有着更加明显的优势,应用前景广阔.  相似文献   

2.
本文主要研究了不同细度粉煤灰复掺对高强混凝土常温以及高温热处理后力学性能的影响。研究结果表明:不同细度粉煤灰复掺对高强混凝土力学性能有着明显的改善作用,但是这种复掺效果对不同类型高强混凝土的影响存在差异,对偏高岭土基高强混凝土早期力学性能的改善并不明显,主要提升其后期力学性能,但是对于普通高强混凝土整个龄期都有提升效果。不同细度的粉煤灰复掺可以优化单掺超细粉煤灰浆体在高温400℃下存在的结构缺陷,显著地提升高强混凝土的高温力学性能,对偏高岭土基高强混凝土高温力学性能的提升达到了12.36%。  相似文献   

3.
周州  李辉  李雪晨 《硅酸盐通报》2017,36(9):3192-3196
以烧结粉煤灰陶粒作为粗骨料,复掺超细粉煤灰与一级粉煤灰部分替代水泥作为胶凝材料,制备轻质高强混凝土.主要研究了两种粉煤灰的掺配比例与总掺量对轻骨料混凝土力学性能、干表观密度及微观形貌的影响.试验结果表明:掺超细粉煤灰能够细化水泥水化产物的晶体尺寸,打乱氢氧化钙的生长取向,减少混凝土内部结构缺陷,使胶凝材料浆体更均匀;当超细粉煤灰与一级粉煤灰的比例为1:1,粉煤灰的总掺量为40%时,可以配制出28 d抗压强度为58.6 MPa,干表观密度为1900 kg/m3的LC50轻质高强轻骨料混凝土.  相似文献   

4.
首先通过改变粉煤灰微珠掺量,确定满足快速修补要求的矿渣-粉煤灰微珠胶凝材料基体的最佳配比,再调节偏高岭土、硅灰掺量,研究其对复合胶凝材料凝结时间、力学性能和水化机理的影响。研究发现,偏高岭土对凝结时间的改变较硅灰更敏感。通过化学结合水测试,分析了不同硅灰和偏高岭土掺量对矿渣-粉煤灰微珠胶凝材料水化反应程度影响的原因。力学实验结果表明:矿渣-粉煤灰微珠胶凝基体复合掺加5%硅灰(质量分数)+15%偏高岭土(质量分数),试块2 h抗压强度为11.5 MPa、28 d抗压强度达到75.2 MPa,且呈现缓慢递增的趋势。  相似文献   

5.
《硅酸盐学报》2021,49(8):1609-1618
探究了水化热抑制剂(TRI)对水泥-粉煤灰胶凝材料水化过程和混凝土性能的影响。通过改变粉煤灰在胶凝材料中的占比和水化热抑制剂的掺量,观察了胶凝材料的水化过程以及混凝土的绝热温升、力学性能和干燥收缩特性。胶凝材料的水化热测试结果表明,在含有粉煤灰的胶凝材料中,水化热抑制剂降低胶凝材料的放热速率峰值、延后放热峰出现时间的作用更加明显。硬化浆体的相组成和微观结构测试表明,水化热抑制剂对胶凝材料水化程度的抑制主要发生在7 d前。混凝土试验结果表明,水化热抑制剂会放缓混凝土的绝热温升速率,降低粉煤灰混凝土的早期强度并增加干燥收缩。  相似文献   

6.
探究了水化热抑制剂(TRI)对水泥-粉煤灰胶凝材料水化过程和混凝土性能的影响。通过改变粉煤灰在胶凝材料中的占比和水化热抑制剂的掺量,观察了胶凝材料的水化过程以及混凝土的绝热温升、力学性能和干燥收缩特性。胶凝材料的水化热测试结果表明,在含有粉煤灰的胶凝材料中,水化热抑制剂降低胶凝材料的放热速率峰值、延后放热峰出现时间的作用更加明显。硬化浆体的相组成和微观结构测试表明,水化热抑制剂对胶凝材料水化程度的抑制主要发生在7 d前。混凝土试验结果表明,水化热抑制剂会放缓混凝土的绝热温升速率,降低粉煤灰混凝土的早期强度并增加干燥收缩。  相似文献   

7.
将600目(23μm)和1 000目(13μm)煤系偏高岭土按照0%、5%、10%、15%(质量分数)的掺量分别掺入混凝土,通过强度测试、XRD、TG-DTG、SEM-EDS和氮吸附试验等研究了煤系偏高岭土细度和掺量对混凝土力学性能和微观结构的影响。结果表明:偏高岭土的掺入显著提高了混凝土的力学性能,当偏高岭土细度为1 000目、掺量为15%时,混凝土的抗压强度最大,90 d抗压强度达到了81 MPa;水化产物主要由氢氧化钙、钙矾石、类水滑石及水化硅酸钙(C-S-H)凝胶等组成,掺入偏高岭土并未改变水化产物种类,但是增加了水化产物中C-S-H凝胶的产生量,同时降低了氢氧化钙的含量。偏高岭土与水泥水化产物氢氧化钙发生二次水化生成C-S-H凝胶,提高混凝土致密性,这是偏高岭土能够增强混凝土力学性能的主要原因。  相似文献   

8.
偏高岭土配制高性能自密实混凝土的研究   总被引:1,自引:0,他引:1  
何小芳  曹新鑫 《粉煤灰》2007,19(1):12-13,16
偏高岭土是一种高活性人工火山灰材料,在水泥水化产物Ca(OH)2的作用下发生火山灰反应,起辅助胶凝材料的作用.偏高岭土单掺时最大掺量为7%,粉煤灰和偏高岭土双掺时二者的最佳掺量分别为15%、7%,此时混凝土的流动性和强度均得到提高.  相似文献   

9.
孙建伟  王强  陈忠辉 《硅酸盐通报》2016,35(8):2524-2529
在28 d抗压强度相近的前提下,制备了纯水泥混凝土、大掺量粉煤灰混凝土、大掺量矿渣混凝土,测定了不同混凝土的后期抗压强度、抗氯离子渗透性,以及胶凝材料的化学结合水、硬化浆体中的Ca(OH)2含量.结果表明:含大掺量矿物掺合料的混凝土的后期强度和抗氯离子渗透性均明显高于纯水泥混凝土;大掺量矿渣混凝土的后期强度高于同掺量的大掺量粉煤灰混凝土;复合胶凝材料的后期水化程度增长率明显高于纯水泥;复合胶凝材料硬化浆体中后期Ca(OH)2含量明显低于纯水泥硬化浆体.  相似文献   

10.
通过测试混凝土抗压强度、劈拉强度、抗渗、抗碳化、抗冻性能,研究了粉煤灰和偏高岭土单掺、复掺时对混凝土性能的影响。同时分析了粉煤灰和偏高岭土对混凝土性能的作用机理。研究结果表明:当粉煤灰掺量为胶凝材料的15%、偏高岭土掺量为胶凝材料的12%,相比普通混凝土,复掺粉煤灰及偏高岭土混凝土28d抗压强度提高了15.8%、劈拉强度提高了20.4%、渗透系数降低了69.1%、碳化深度降低了29.3%,200次冻融循环后,相对动弹性模量提高了33.1%、混凝土质量损失降低了43.8%。复掺粉煤灰及偏高岭土适用于制备高性能混凝土。  相似文献   

11.
12.
13.
陈建文 《广东化工》2006,33(6):79-81
乙烯酮(双乙烯酮)是十分重要的化工中间体,其下游产品较多。江苏某化工厂开发生产乙烯酮(双乙烯酮)下游产品三十多个,年生产规模三万多吨,是国内以乙烯酮(双乙烯酮)为中间体生产精细化学品的综合骨干企业。针对乙烯酮(双乙烯酮)下游产品废水特点,该厂结合企业实际,开展了产品优化,结构调整,清洁生产,资源循环利用,节水降耗等工作,从源头削减了污染物的生产。同时投资二千多万元新建预处理装置三套,6000m3/d废水生化处理装置一套,使全厂乙烯酮(双乙烯酮)下游产品的废水得到了有效的治理。  相似文献   

14.
以添加FeCl2的ZnCl2-KCl混合熔盐裂解纤维素和秸秆,制得生物油。采用傅立叶变换红外光谱法和气相色谱-质谱法分析生物油的成分。结果表明,生物油中成分复杂,含有氧元素、多种有机化合物,主要包括酮类、醛类、酚类及羧酸类等。测定了20~80℃生物油的密度和粘度,发现生物油的密度与温度呈较好线性关系,而生物油的粘度均大于水的粘度,且不同熔盐体系对秸秆生物油的粘度无较大影响。  相似文献   

15.
周云  温集强 《水泥》2007,(10):29-30
我厂3号回转窑(Φ4m×60m)生产线在1996年年底由SP窑(产量912t/d)改为NSP窑(产量1320t/d),预分解系统为四级旋风预热器带离线式分解炉  相似文献   

16.
The objective of the study was to explore the effect of the degree of deacetylation (DD) of the chitosan used on the degradation rate and rate constant during ultrasonic degradation. Chitin was extracted from red shrimp process waste. Four different DD chitosans were prepared from chitin by alkali deacetylation. Those chitosans were degraded by ultrasonic radiation to different molecular weights. Changes of the molecular weight were determined by light scattering, and data of molecular weight changes were used to calculate the degradation rate and rate constant. The results were as follows: The molecular weight of chitosans decreased with an increasing ultrasonication time. The curves of the molecular weight versus the ultrasonication time were broken at 1‐h treatment. The degradation rate and rate constant of sonolysis decreased with an increasing ultrasonication time. This may be because the chances of being attacked by the cavitation energy increased with an increasing molecular weight species and may be because smaller molecular weight species have shorter relaxation times and, thus, can alleviate the sonication stress easier. However, the degradation rate and rate constant of sonolysis increased with an increasing DD of the chitosan used. This may be because the flexibilitier molecules of higher DD chitosans are more susceptible to the shear force of elongation flow generated by the cavitation field or due to the bond energy difference of acetamido and β‐1,4‐glucoside linkage or hydrogen bonds. Breakage of the β‐1,4‐glucoside linkage will result in lower molecular weight and an increasing reaction rate and rate constant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3526–3531, 2003  相似文献   

17.
水泥水化热是中、低热水泥和核电工程用水泥的一项关键的技术指标。全球范围内测定水泥水化热的方法有溶解法、直接法/半绝热法、等温传导量热法三种。本文总结了中、美、欧相关方法标准,对其测试原理、仪器设备、试验过程等方面进行了比对,并对其在领域的应用做了简单的概括。  相似文献   

18.
Conclusions It is significant that the purification on a single passage of viscose through porous ceramic corresponds to the result of a two-stage filtration of it in industrial filter-presses with standard fillings.Kiev Combine. Kiev Technological Institute of Light Industry. Translated from Khimicheskie Volokna, No. 3, pp. 20–22, May–June, 1969.  相似文献   

19.
20.
A refined nonlinear value of the main parameter of a material, i.e., the elongation modulus versus the instant temperature value, was suggested for introduction into the computational algorithm of tempering stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号