首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on orthogonal experimental design (OED), the effects of the sintering pressure, sintering temperature and holding time on the mechanical properties of 50 vol% silicon carbide particle (SiCp)/2024Al composites prepared by spark plasma sintering (SPS) were investigated. The sintering pressure had the greatest effect on the density and bending strength of the material among these three factors, followed by sintering temperature and holding time. The optimised process conditions for producing the 50 vol% SiCp/2024Al were sintering at 550 °C for 5 min under 40 MPa, which resulted in a composite material with a density of 99.7% and good interface bonding with a comparatively high bending strength of 766.65 MPa. This work provides a promising method to produce high volume fraction composites that can meet high strength requirements.  相似文献   

2.
《Ceramics International》2017,43(7):5607-5615
Capillary infiltration and an in situ reaction between filter papers and zirconia powders were employed to synthesize laminated C/ZrC composite via vacuum impregnation and hot-pressing sintering at 1700 °C for 90 min under a pressure of 30 MPa. The microstructures and mechanical properties of the laminated C/ZrC composite were characterized via XRD, SEM, TEM analyses and the three-point bending test. The results indicated that the obtained composite exhibited a distinct laminar structure with alternating carbon and zirconium carbide layers. The composite had a bulk density of 1.89 g/m3, an open porosity of 21.6%, and a bending strength of 128 MPa. Typical non-brittle fracture behaviors are observed, and the composites show an elastic deformation at the beginning of the test, exhibiting a zigzagging rise until the maximum stress is reached.  相似文献   

3.
With the aim of improving the toughness of ceramic materials, laminated composites have been successfully developed since Clegg et al. (1990) inserted weak interfaces using very thin graphite layers between silicon carbide sheets and obtained a composite that exhibited non-catastrophic fracture characteristics. The weak interface must allow the crack to deviate either by deflection or delamination; in other words, the interface must exhibit a fracture resistance that is lower than that of the matrix layer. In parallel, ceramic laminated composites with strong interfaces were developed in which the residual tensile and compressive stresses appeared in alternate layers during cooling after sintering. These composites are prepared by stacking ceramic sheets produced by lamination or tape casting or by the sequential formation of layers by slip casting, centrifugation or electrophoretic deposition. The techniques may be combined to obtain a composite with the most adequate configuration. This work presents a review about the obtainment of multilayered ceramic composites as a toughening mechanism of ceramic plates.  相似文献   

4.
In this paper, the novel boron nitride micron tubes (BNMTs) were used to reinforce commercial boron carbide (B4C) ceramics prepared via spark plasma sintering technology. The effects of the sintering parameters, sintering temperature, the holding time, and the BNMTs content on the microstructure and mechanical properties of B4C/BNMTs composite ceramics were studied. The results indicated that adding a proper amount of BNMTs could inhibit the grain growth of B4C and improve the fracture toughness of the B4C/BNMTs composite ceramics. The prepared composite ceramic sample with 5 wt% BNMTs at 1850°C, 8 min and 30 MPa displayed the best mechanical properties. The relative density, hardness, fracture toughness, and bending strength of the samples were 99.7% ± .1%, 35.62 ± .43 GPa, 6.23 ± .2 MPa m1/2, and 517 ± 7.8 MPa, respectively. Therein, the corresponding value of hardness, fracture toughness, and bending strength was increased by 10.3%, 43.59%, and 61.5%, respectively, than that of the B4C/BNMTs composite ceramic without BNMTs. It was proved that the high interface binding energy and bridging effect between boron carbide and BNMTs were the toughening principle of BNMTs.  相似文献   

5.
《Ceramics International》2019,45(11):14045-14057
In the present study, woven carbon fabrics, graphene nano sheets (GNPs) and graphites were used as the bonding source between Ti sheets to produce Ti-TiC laminated composites through spark plasma sintering. In the case of carbon fibers, the woven fabrics were cut in a circular shape and inserted between the Ti sheets; on the other hand, in the case of graphite and GNPs, ethanol with carbon sources as the mixture was sprayed on the surface of the starting Ti sheets until reaching the specified increase in the weight of the coated Ti. After that, seven layers of Ti sheets (including six coated layers and one un-coated one) were inserted to the graphite die and the sintering process was performed with the initial and final applied pressure of 10 and 50 MPa, respectively, at the sintering temperature of 1250 °C. The XRD patterns taken from the cross-section of the prepared composites revealed the formation of the TiC crystalline phase as the product of the reaction between Ti and the carbon sources. The FESEM images also showed the proper bonding between the layers due to the formation of TiC and carbon diffusion into the Ti sheets. The fracture surfaces of the prepared sample demonstrated the almost ductile fracture for the Ti-laminated sample, as well as the Ti-GNPs laminated composite, while the brittle fracture was obtained for the composites with graphite and the carbon fabric as the bonding layers. The highest hardness of 912 ± 17 Hv was calculated for the cross-section of the Ti-CF laminated composite; also, the highest bending strength of 1215 ± 18 MPa was obtained for the Ti-GNPs laminated composite.  相似文献   

6.
《Ceramics International》2022,48(2):1589-1602
In this work, the Al2O3-reinforced high Nb–TiAl laminated composite is successfully fabricated by an innovative way of direct-current magnetron sputtering combined with the foil-foil metallurgy, with assistance of vacuum hot-pressed sintering. Here, the Nb-coated aluminum foil and titanium foil, microstructure evolution, the lamellar plane distribution and the mechanical performances are carefully studied. Specifically, the composite is composed of the α2-Ti3Al, γ-TiAl and α-Al2O3 phase, in which the high Nb–TiAl matrix has a fully lamellar microstructure and a high content (~6.5%) of Nb. Taken the textured titanium foil as raw material, the multi-stage annealing process is proved to be an effective way to control the lamellar plane distribution in the high Nb–TiAl matrix, showing that 82.3% of the lamellar planes forms an angle less than 30° from the RD-ND plane of the composite. Moreover, the bending strength and fracture toughness of the composite reach 817 MPa and 12.41 MPa m1/2, respectively. Further, the toughening and strengthening mechanisms are also detailly discussed. We believe that the major findings in this work can provide a new idea to design the high strength-toughness intermetallic-ceramic composites.  相似文献   

7.
In this paper, spodumene/mullite ceramics with good thermal shock resistance were prepared from spodumene, quartz, talc, and clay when the sintering temperature was 1270℃. In the sintering process, the effect of holding time on densification, mechanical properties, phase transformation, microstructure, and thermal shock resistance of the composite ceramics were investigated. The phase transition and microstructures of the ceramics were identified via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The interaction between holding time and bulk density was studied by response surface methodology. The result show that an appropriate holding time can improve the mechanical properties of spodumene/mullite ceramics. When the holding time was kept 90 min, the spodumene/mullite ceramics with the apparent porosity was .47%, the bulk density was 2.28 g/cm3, and bending strength was 63.46 MPa. Furthermore, since no cracks formed after 20 thermal shock cycles for the composite ceramics with a bending strength decreasing rate of 12.66%, it is revealed that spodumene/mullite ceramics exhibit good thermal shock resistance. Therefore, this study can provide beneficial guidance for both industrial production and energy conservation.  相似文献   

8.
A resorcinol resin/water dispersion and a rubber latex are added to 1% 2,2,6,6,-tetramethylpyperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TEMPO-CNFs) dispersed in water, followed by oven drying at 40 °C for 20 h to prepare a dried TEMPO-CNF/resorcinol resin/latex rubber (DTRL) mixture with a weight ratio of 1/0.5/3. DTRL is then added to a nitrile-butadiene rubber (NBR) or a carboxy group-containing NBR (X-NBR) sheet, and the mixture is kneaded by a two-roll mill at 20–30 °C with high shear forces. The tensile strength and Young's modulus of the crosslinked DTRL/rubber composite sheets remarkably increased from 10 and 12 MPa, respectively, for the reference sheet to 24 and 82 MPa, respectively, for the DTRL/rubber composite sheets containing ≈10 vol% TEMPO-CNFs. Scanning electron microscopy revealed that no TEMPO-CNF agglomerates are present in the DTRL/rubber composite sheets. The tensile properties of the composite sheets are the best when a X-NBR sheet and NBR latex are used as the matrix rubber and latex in DTRL preparation, respectively. When water-extracted DTRL (WDTRL, mass recovery ratio ≈94%) is used in place of DTRL, the WDTRL/rubber composite sheets show sufficient water resistance, while the tensile properties are almost the same as those of the DTRL/rubber composite sheets.  相似文献   

9.
《Ceramics International》2023,49(5):7404-7413
TiB2 composite ceramics containing different amounts of Ti and TiC were fabricated via spark plasma sintering (SPS), and effects of their addition contents on the microstructure and mechanical properties were discussed. The newly formed phases of TiB with a cubic lattice structure in the composite ceramics were observed. At a relatively low temperature of 1510 °C, pressure of 50 MPa, and holding time of 5 min, the TiB2 composite ceramic with 30 wt% TiC and 10 wt% Ti additions acquired an excellent strength of 727 MPa and a high toughness of 7.62 MPa m1/2. The improvement in strength and toughness was attributed to the mixed fracture mode, second phase strengthening, and increased energy consumption for crack propagation caused by the newly formed phases and fine TiC particles. In addition, the significant effects of the Ti and TiC addition contents on the densification temperature and mechanical properties of the composite ceramics were determined using analysis of variance (ANOVA).  相似文献   

10.
Reliable brazing of carbon fiber reinforced SiC (Cf/SiC) composite to Nb-1Zr alloy was achieved by adopting a novel Ti45Co45Nb10 (at.%) filler alloy. The effects of brazing temperature (1270–1320 °C) and holding time (5–30 min) on the microstructure and mechanical properties of the joints were investigated. The results show that a continuous reaction layer (Ti,Nb)C was formed at the Cf/SiC/braze interface. A TiCo and Nb(s,s) eutectic structure was observed in the brazing seam, in which some CoNb4Si phases were distributed. By increasing the brazing temperature or extending the holding time, the reaction layer became thicker and the amount of the CoNb4Si increased. The optimized average shear strength of 242 MPa was obtained when the joints were brazed at 1280 °C for 10 min. The high temperature shear strength of the joints reached 202 MPa and 135 MPa at 800 °C and 1000 °C, respectively.  相似文献   

11.
《Ceramics International》2016,42(9):10951-10956
A Mo/Ti3SiC2 laminated composite is prepared by spark plasma sintering at 1300 °C under a pressure of 50 MPa. Al powder is used as sintering aid to assist the formation of Ti3SiC2. The fabricated composites were annealed at 800, 1000 and 1150 °C under vacuum for 5, 10, 20 and 40 h to study the composite's interfacial phase stability at high temperature. Three interfacial layers, namely Mo2C layer, AlMoSi layer and Ti5Si3 solid solution layer are formed during sintering. Experimental results show that the Mo/Ti3SiC2 layered composite prepared in this study has good interfacial phase stability up to at least 1000 °C and the growth of the interfacial layer does not show strong dependence on annealing time. However, after being exposed to 1150 °C for 10 h, cracks formed at the interface.  相似文献   

12.
Bio‐inspired layered ceramic‐polymer composites with high strength and toughness were prepared from sintered aluminum oxide ceramic sheets and cationically curing epoxy resins toughened with poly(ε‐caprolactone) (PCL). The architecture of the composite is inspired by nacre but is arranged on a larger scale. Ceramic sheets with a nominal thickness of 250 μm were assembled into composite plates by adhesive layers with a nominal thickness of 20 μm. Before the manufacturing of the composites, the stress‐strain properties of the polymer component were tailored by the variation in the PCL content between 0 and 39 wt%. For composites with 4 and 15 ceramic layers, the bending strengths achieved 327 MPa and 376 MPa, which are higher than that of pure ceramic sheets. Moreover, composites with 15 ceramic layers show a 16 times higher toughness compared to that of the pure ceramic sheets. The results indicate that the toughness of the layered composites increases significantly with the number of layers. Inspired by the geometrical ratio of the natural sheet composite nacre, we have achieved a similar strength but a 2 times higher toughness than nacre by only adding up to 6 vol% of the polymer.  相似文献   

13.
《Ceramics International》2020,46(5):5937-5945
SiC whisker coating was prepared on the surface of C/C composite successfully by CVD, and transient liquid phase (TLP) diffusion bonding was employed to realize the joining of SiC whisker coating modified C/C composite and Ti2AlNb alloy using Ti–Ni–Nb foils as interlayer. The microstructure, shear strength and fracture behavior were investigated by scanning electron microscopy (SEM) with energy dispersive X-ray spectrometer (EDS), X-ray diffraction (XRD) and universal testing machine. The results show that SiC has good compatibility with C/C composite, and gradient interface formed between SiC-modified C/C composite and Ti2AlNb alloy. When the bonding experiment was carried out under bonding temperature of 1040 °C and holding time of 30min with 5 MPa pressure in vacuum, the joints formed well and no obvious defects can be observed. The typical microstructure of joints is C/C composite/SiC + TiC/Ti–Ni compounds + Ti–Ni–Nb solid solutions/residual Nb/diffusion reaction layer/Ti2AlNb alloy. With the increasing of bonding temperature, the thickness of joining area increased due to sufficient element diffusion. However, when bonding temperature is elevated to 1060 °C, some defects such as cracks and slag inclusions exist in the interface layer between interlayer and Ti2AlNb. The joints with maximum average shear strength of 32.06 MPa are bonded at 1040 °C for 30min. C, SiC and TiC can be found on the fracture surface of joints bonded at 1040 °C which indicated that fracture occurred at the interface layer adjacent SiC layer.  相似文献   

14.
Herein, alumina green bodies are fabricated by three dimensional (3D) printing technology, then, the influence of debinding holding time under vacuum and argon on mechanical properties is systematically investigated by comparing the changes in microstructure, bulk density, open porosity, grain connection situation and flexural strength of ceramics. The flexural strength of alumina ceramics acquired the maximum values of 26.4 ± 0.7 MPa and 25.1 ± 0.5 MPa after debinding under vacuum and argon for 120 min and 180 min, respectively. However, the alumina ceramics rendered the flexural strength of 19.4 ± 0.6 MPa and 9.5 ± 0.4 MPa under vacuum and argon without extended holding time, respectively. The relatively low mechanical properties can be mainly attributed to the weak interlayer binding force, which is caused by layer-by-layer forming mode during 3D printing process and anisotropic shrinkage during the sintering process. Moreover, the alumina ceramics exhibited moderate bulk density and open porosity of 2.4 g/cm3 and 42% after the sintering process, respectively, which are mainly influenced by the microstructural evolution of alumina ceramics during thermal treatment. Also, the diffusion of gases is achieved by curing of photosensitive resin and influenced by different holding times during debinding, affecting the mechanical properties of sintered ceramics. The mechanical properties of as-sintered ceramics are suitable for the utilization of ceramic cores in the manufacturing of hollow blades.  相似文献   

15.
《Ceramics International》2017,43(13):9738-9745
Porous Si3N4 ceramic was firstly joined to TiAl alloy using an AgCu filler alloy. The effects of brazing temperature and holding time on the interfacial microstructure and mechanical properties of porous-Si3N4/AgCu/TiAl joints were studied. The typical interfacial microstructure of joints brazed at 880 °C for 15 min was TiAl/AlCu2Ti/Ag-Cu eutectic/penetration layer (Ti5Si3+TiN, Si3N4, Ag (s, s), Cu (s, s))/porous-Si3N4. The penetration layer was formed firstly in the brazing process. With increasing brazing temperature and time, the thickness of the penetration layer increased. A large amount of element Ti was consumed in the penetration layer which suppressed the formation and growth of other intermetallic compounds. The penetration layer led the fracture to propagate in the porous Si3N4 ceramic substrate. The maximum shear strength was ~13.56 MPa.  相似文献   

16.
《Ceramics International》2016,42(11):12586-12593
Alumina (Al2O3) ceramics were metallized by magnetron sputtering Ti/Mo bilayer films on the surface with a subsequent high temperature sintering and were brazed to Kovar alloy (Fe-Ni-Co) using Ag-Cu eutectic alloy. The Ti/Mo metallization film and the brazing seam microstructures were investigated and the correlation between the Al2O3/Kovar joining strength and the microstructures of the brazing seam was discussed. The results show that the joining strength is related to the thickness of the Ti/Mo adhension layer which depends on the holding time during brazing. The mutual diffusion of the elements at the interface firstly increases the thickness of the adhension layer as the holding time increases and the Mo film acts as a barrier layer to block the diffusion of Ti atoms into the seam. The optimal brazing joining strength of 72.6±5.0 MPa could be achieved at a brazing temperature of 810 °C for 14 min However, if the holding time is further prolonged, Mo atoms will diffuse into the (Ni, Cu) solid solution, resulting in the diffusion of Ti atoms and the adhension layer becoming indistinguishable. Therefore, the intermetallic Ni3Ti forms in the seam and the titanium oxide changes from TiO to Ti2O3 or Ti3O5, which leads to the joint strength decreasing.  相似文献   

17.
《Ceramics International》2016,42(6):6924-6934
Al2O3 ceramic was reliably joined to TiAl alloy by active brazing using Ag–Cu–Ti filler metal, and the effects of brazing temperature, holding time, and Ti content on the microstructure and mechanical properties of Al2O3/TiAl joints were investigated. The typical interfacial microstructure of joints brazed at 880 °C for 10 min was Al2O3/Ti3(Cu,Al)3O/Ag(s.s)+AlCu2Ti+Ti(Cu,Al)+Cu(s.s)/AlCu2Ti+AlCuTi/TiAl alloy. With increasing brazing temperature and time, the thickness of the Ti3(Cu,Al)3O reaction layer increased, and the blocky AlCu2Ti compounds aggregated and grew gradually. The Ti dissolved from the TiAl substrate was sufficient to react with Al2O3 ceramic to form a thin Ti3(Cu,Al)3O layer when Ag–Cu eutectic alloy was used, but the dissolution of TiAl alloy was inhibited with an increase in Ti content in the brazing filler. Ti and Al dissolved from the TiAl alloy had a strong influence on the microstructural evolution of the Al2O3/TiAl joints, and the mechanism is discussed. The maximum shear strength was 94 MPa when the joints were brazed with commercial Ag–Cu–Ti filler metal, while it reached 102 MPa for the joint brazed with Ag–Cu+2 wt% TiH2 at 880 °C for 10 min. Fractures propagated primarily in the Al2O3 substrate and partially along the reaction layer.  相似文献   

18.
《Ceramics International》2022,48(16):23151-23158
SiC composite ceramics have good mechanical properties. In this study, the effect of temperature on the microstructure and mechanical properties of SiC–TiB2 composite ceramics by solid-phase spark plasma sintering (SPS) was investigated. SiC–TiB2 composite ceramics were prepared by SPS method with graphite powder as sintering additive and kept at 1700 °C, 1750 °C, 1800 °C and 50 MPa for 10min.The experimental results show that the proper TiB2 addition can obviously increase the mechanical properties of SiC–TiB2 composite ceramics. Higher sintering temperature results in the aggregation and growth of second-phase TiB2 grains, which decreases the mechanical properties of SiC–TiB2 composite ceramics. Good mechanical properties were obtained at 1750 °C, with a density of 97.3%, Vickers hardness of 26.68 GPa, bending strength of 380 MPa and fracture toughness of 5.16 MPa m1/2.  相似文献   

19.
Sintered silicon carbide was brazed to itself by Ag–35.25 wt%Cu–1.75 wt%Ti filler alloy at 860 °C, 900 °C and 940 °C for 10 min, 30 min and 60 min. Mechanical properties both at room temperature and high temperature were measured by flexural strength. The interfacial microstructure was investigated by electron probe microanalysis (EPMA), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The experimental results indicate that increased brazing temperature heightens the flexural strength and the maximal four-point flexural strength reaches 342 MPa at room temperature. In addition longer holding times result in thicker reaction layer, which increases mismatch of coefficients of thermal expansion (CTE) between SiC substrate and reaction layer and finally leads to poor mechanical properties due to high residual stresses. High temperature flexural strength decreases with an increase of test temperature due to softening of the filler alloy. A reaction layer composed of TiC and Ti5Si3 was observed at the interface of SiC/filler alloy and there is a representative microstructure: SiC/continuous fine TiC layer/discontinuous coarse Ti5Si3 layer/filler alloy.  相似文献   

20.
《Ceramics International》2022,48(21):31827-31842
Difficulties associated with the manufacturing of diboride based large and complex shapes mandate them to be joined for extreme applications. In the present work, spark plasma sintering is utilized to join HfB2-ZrB2-SiC-B4C-CNT (HZSBC) based composites with Ni-interlayer at 1100 °C and without interlayer at 1800 °C. Microstructural analysis has elicited the formation of Ni diffused reaction zone (150–200 μm), and unaffected HZSBC composite for HZSBC-Ni-HZSBC joined composite (at 1100 °C), which gets merged into a homogeneous microstructure (without any distinguishable interface) in the HZSBC-HZSBC joint (without Ni-interlayer). An overall reduction of 18% and 14% is elicited in hardness and elastic modulus, respectively, in the HZSBC-Ni-HZSBC joint, whereas in HZSBC-HZSBC joined composite, uniform hardness and elastic modulus of ~22 GPa and ~398 GPa, respectively, is observed. Further, the bending and shear strength of the joined composites was obtained to be ~209 MPa and ~41 MPa, respectively, for HZSBC-Ni-HZSBC, which increased to ~342 MPa and ~81 MPa, respectively, for HZSBC-HZSBC. In conjunction, though superior high-temperature (1500 °C) oxidation protection is witnessed in HZSBC-HZSBC joint, with a thinner oxide layer, both display SiO2-rich protective glassy layer, making these composites potential candidates for use in atmospheric re-entry conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号