首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用响应面优化法优化了乙烯基封端PDMS/PVDF渗透汽化透醇膜的制膜条件,研究了硅橡胶浓度、B/A质量比、交联温度和交联时间对膜性能的影响,拟合了分离因子、渗透通量与四因素之间的回归方程,并用方差分析法考察了四因素的主效应、二次效应以及相互作用效应对复合膜的分离因子与渗透通量的影响。研究发现,硅橡胶浓度对膜的分离因子与渗透通量的影响最为显著,交联时间对分离因子几乎没有影响。通过对回归方程的优化分析得知,在料液乙醇浓度为10%(wt),操作温度40℃条件下,当硅橡胶浓度为93%(wt),B/A质量比为0.08,交联温度为100℃,交联时间为13.83 h时,膜的综合分离性能达到最佳,此时分离因子与渗透通量预测值分别为9.47、77.57 g(m2 h)1,渗透侧乙醇浓度达到51.3%(wt)。回归方程的验证实验结果表明,回归方程的估计值与实验值较为吻合,可用于乙烯基封端的PDMS/PVDF复合膜的渗透汽化性能的预测与优化。  相似文献   

2.
以不同结构的聚四氟乙烯(PTFE)平板膜为支撑层、聚二甲基硅氧烷(PDMS)为活性层,通过表面涂覆方法制备PTFE-PDMS复合膜,并用于渗透汽化过程,以实现乙醇-水混合溶液的分离;研究了支撑层结构及制膜参数对其分离性能的影响。结果表明,支撑层结构对复合膜分离因子几乎无影响,对孔径大孔隙率高的支撑层,制膜时,PDMS聚合物向支撑层中渗入过多会使复合膜的渗透通量降低。PDMS聚合物向支撑层渗透形成的过渡层是复合膜传质阻力的重要部分,且过渡层厚,复合膜的耐溶胀性好。综合考虑渗透通量及分离因子,复合膜优化制备条件是交联剂正硅酸乙酯的质量分数4%,交联温度80℃,交联时间为5 h。  相似文献   

3.
以聚醚共聚酰胺(PEBAX)为分离膜材料,聚内烯腈(PAN)超滤膜为支撑层,纳米气相二氧化硅(n-Si O2)颗粒为填充物,分别制备了PEBAX/PAN复合膜及n-Si O2-PEBAX/PAN填充型复合膜,旨在通过渗透汽化分离吡啶。采用扫描电镜(SEM)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)对复合膜进行表征,表明n-Si O2与聚合物只是物理混合。以吡啶/正庚烷混合物为模拟溶液,考察膜的溶胀及渗透汽化分离性能。溶胀实验结果表明:膜溶胀度随料液吡啶含量及温度的增加而增大。渗透汽化实验结果表明:n-Si O2填充量为10‰(wt)时总渗透通量最大,填充量为5‰(wt)时分离因子最大。总渗透通量和分离因子都随料液吡啶浓度增大而增加;渗透汽化操作温度升高,总渗透通量增大,而分离因子减小。当填充量为5‰(wt)、温度为30℃、以及料液吡啶含量为5000?g?g?1时,Pn5膜的总渗透通量为5.05 kg?m?2?h?1,分离因子为3.39。研究结果表明,Si O2-PEBAX/PAN复合膜对吡啶有较好的富集作用。  相似文献   

4.
通过浸渍-提拉的方法制备了PDMS涂覆的Al2O3中空纤维膜,并系统地研究了其用于ABE/水体系的分离过程。首先对制备出的膜进行了形貌表征,SEM电镜照片表明,所用的Al2O3中空纤维支撑体具有非对称结构,海绵孔位于膜壁的中间而指状孔在其两侧。制备出的PDMS涂覆的Al2O3中空纤维复合膜表面致密完好没有缺陷,其厚度小于10μm,说明PDMS层被均匀地涂在支撑体外表面。然后在不同的模拟体系(丙酮-水、丁醇-水、乙醇-水)中,系统地考察了复合膜的性能。实验表明,复合膜具有优异的渗透汽化性能(通量和分离因子)。最后将该复合膜用于ABE-水体系的分离,考察了膜在操作过程中的渗透汽化性能和稳定性,同时将二元体系与四元体系过程对比,讨论渗透汽化对ABE体系的分离作用。  相似文献   

5.
为探究出适合分离水中的乙酸正丁酯和乙酸乙酯的新型渗透汽化膜材料,选用沸石ZSM-5 对聚二甲基硅氧烷(PDMS)材料进行填充改性,以聚偏氟乙烯(PVDF)为支撑层,采用刮涂法制备PDMS/ZSM-5/PVDF复合膜渗透汽化分离水中的乙酸正丁酯和乙酸乙酯。采用SEM、接触角测量仪、FTIR、TGA和XRD等对膜材料物理化学性能进行表征,考察了膜材料的溶胀行为及渗透汽化性能。结果表明,ZSM-5在 PDMS 膜中分散均匀,且没有发生化学作用,并提高了膜材料的疏水性和热稳定性。随着ZSM-5添加量的增加,膜在乙酸正丁酯和乙酸乙酯的溶胀度和待分离组分在膜材料中的扩散速率不断增加。随着进料浓度和温度的增加,渗透通量不断增大,分离因子先增大后减小。随着ZSM-5在PDMS/ZSM-5/PVDF复合膜中含量的增加,总渗透通量增加,而分离因子呈现先增加后减小的趋势。当添加量为10%(质量)时,分离因子达到最大值。对于乙酸正丁酯/水体系,渗透通量和分离因子最大值分别为319 g·m -2·h -1和131;而对于乙酸乙酯/水体系,渗透通量和分离因子最大值分别为1385 g·m -2·h -1和121。  相似文献   

6.
《应用化工》2022,(1):89-92
由ZSM-5沸石和聚二甲基硅氧烷(PDMS)制备超薄沸石填充PDMS复合膜,考察沸石填充量、沸石结构中硅铝比和操作温度对沸石填充硅橡胶膜渗透汽化性能的影响。结果表明,超薄复合膜的制备可以改善渗透通量小的缺陷。沸石填充量30%时分离因子最大;具有相同填充量的PDMS膜,硅铝比较大的填充膜,其分离因子和渗透通量均较高;随着操作温度的升高,复合膜分离因子先升高后降低,在50℃达到最大值,其渗透通量呈升高趋势。  相似文献   

7.
由ZSM-5沸石和聚二甲基硅氧烷(PDMS)制备超薄沸石填充PDMS复合膜,考察沸石填充量、沸石结构中硅铝比和操作温度对沸石填充硅橡胶膜渗透汽化性能的影响。结果表明,超薄复合膜的制备可以改善渗透通量小的缺陷。沸石填充量30%时分离因子最大;具有相同填充量的PDMS膜,硅铝比较大的填充膜,其分离因子和渗透通量均较高;随着操作温度的升高,复合膜分离因子先升高后降低,在50℃达到最大值,其渗透通量呈升高趋势。  相似文献   

8.
《应用化工》2015,(5):845-849
制备了超支化聚硅氧烷,并以超支化聚硅氧烷膜(HPSi O-c-PDMS)为中间层、聚硅氧烷(VTES-c-PDMS)为表层选择层,制备了具有多层结构的复合膜,并对其进行静态接触角和SEM表征,系统研究了PDMS分子量、料液温度对渗透汽化性能的影响。结果表明,随着表层分离层PDMS分子量的增加,多层复合膜的通量降低,而分离因子上升;随着料液温度升高,多层复合膜的通量和分离因子上升明显。  相似文献   

9.
《应用化工》2022,(5):845-849
制备了超支化聚硅氧烷,并以超支化聚硅氧烷膜(HPSi O-c-PDMS)为中间层、聚硅氧烷(VTES-c-PDMS)为表层选择层,制备了具有多层结构的复合膜,并对其进行静态接触角和SEM表征,系统研究了PDMS分子量、料液温度对渗透汽化性能的影响。结果表明,随着表层分离层PDMS分子量的增加,多层复合膜的通量降低,而分离因子上升;随着料液温度升高,多层复合膜的通量和分离因子上升明显。  相似文献   

10.
采用PVDF中空纤维为基膜,以Si O_2填充PDMS溶液为涂覆液,进行动态负压涂覆,制备Si O_2/PDMS/PVDF复合膜材料,回收处理煤化工废水中的酚。通过扫描电镜(SEM)、能量弥散X射线能谱仪(EDS)及接触角测试仪对Si O_2/PDMS/PVDF复合膜材料进行了表征,并研究了Si O_2质量浓度、涂覆时间对Si O_2/PDMS/PVDF复合膜材料渗透蒸发性能的影响。当Si O_2填充质量浓度占PDMS质量浓度的12%,涂覆时间60 min条件下,制得的Si O_2/PDMS/PVDF复合膜具有最佳的渗透蒸发性能。保持进水温度50℃,膜后压力50 k Pa,进水流速10 L/h,酚通量达到7.16 g/(m~2·h),分离因子为4.26。  相似文献   

11.
通过相转化法制备PVDF多孔支撑膜,在其上涂覆致密的PDMS分离层制备得到PVDF/PDMS复合膜,用于丁醇的分离纯化。以丁醇水溶液为原料液,流速为1.6 L·min-1,丁醇浓度为15 g·L-1,温度为37℃时,PVDF/PDMS复合膜的总通量为158.2 g·m-2·h-1,分离因子为17.3。向丁醇水溶液中按丁醇:丙酮:乙醇比例为6:3:1添加丙酮和乙醇模拟发酵液,PVDF/PDMS复合膜的总通量升高到189.5 g·m-2·h-1,分离因子降低到14.8。进一步考察了以丙酮-丁醇-乙醇(ABE)发酵液为原料液的渗透气化膜分离性能,发酵液中不存在菌体时,PVDF/PDMS复合膜的总通量和分离因子分别为120.2 g·m-2·h-1和19.7,而菌体存在时,复合膜的总通量和分离因子分别为122.1 g·m-2·h-1和16.7。与PDMS均质膜相比,PVDF/PDMS复合膜在丁醇分离过程中的分离性能有了显著的提升,具有潜在的应用价值。  相似文献   

12.
制备了壳聚糖-海藻酸钠/聚丙烯腈(CS-SA/PAN)聚离子复合膜,将此膜用于渗透汽化分离乙酸乙酯水溶液.用红外光谱(FT-IR)表征CS、SA、CS/SA均质膜.研究CS-SA/PAN聚离子复合膜的溶胀性、料液浓度和SA质量分数、操作温度对乙酸乙酯水溶液脱水效果的影响.实验表明:CS/SA聚离子均质膜在乙酸乙酯水溶液中的溶胀度随溶液中水质量分数的增加而增大,随SA的质量分数增加而减小,40℃、SA质量分数为2.0%时,CS/SA聚离子均质膜在乙酸乙酯质量分数为97%的水溶液中溶胀度可达51%.随着SA质量分数的增加,CS-SA/PAN聚离子复合膜的渗透通量减小,分离因子增大,40℃、SA质量分数为2.0%时,分离乙酸乙酯质量分数为97%的水溶液,CS-SA/PAN聚离子复合膜渗透通量可达348g/(m^2.h),分离因子为7245.随着料液中水含量的增加和料液温度的升高,膜渗透通量增大,分离系数减小,渗透通量与料液温度的关系能较好地吻合Arrhenius方程.  相似文献   

13.
以4种不同结构的聚砜(PSF)作为支撑层,制备PDMS/PSF渗透汽化复合膜,考察其用于乙醇/水体系的分离性能,以研究支撑层结构对渗透汽化复合膜分离性能的影响。采用SEM和EDX分析复合膜表层结构,结果表明,支撑层结构几乎不影响复合膜的选择性,但对膜通量有较大影响,特别是支撑层的表面结构对复合膜性能的影响比断面结构更明显。  相似文献   

14.
制备了一种PIB/PAN复合膜,对该膜在乙醇溶液体系中的性能做了一定的基础研究工作,并采用FTIR、SEM、AFM和接触角对膜进行表征。结果显示PIB均匀地涂覆在PAN支撑膜上,形成一层无孔的致密层;随着涂覆的PIB浓度的增加,膜表面的平均粗糙度呈现先增大后减少的趋势,复合膜的亲水性和亲油性都变差;复合膜对纯水没有通量,而对乙醇具有一定的渗透通量,在PIB质量分数为0.8%的时候,复合膜对乙醇水溶液具有最佳的分离特性。  相似文献   

15.
左成业  涂睿  丁晓斌  邢卫红 《化工学报》2020,71(9):4189-4199
乙酸与异丁醇酯化反应生产乙酸异丁酯,产生大量含异丁醇的废水,常规生化处理负荷重,浪费资源。采用PDMS复合膜分离回收酯化废水中的异丁醇,考察了异丁醇浓度对PDMS复合膜溶胀度及分离性能的影响,优化渗透汽化过程操作参数,研究了乙酸异丁酯对PDMS复合膜回收异丁醇效果的影响。结果表明,随着异丁醇浓度从1%增大到3%(质量),PDMS复合膜溶胀度先增大后趋于平稳,异丁醇的渗透通量呈增大趋势,分离因子保持在15左右;操作温度从30℃升至60℃时,渗透通量增大,异丁醇的分离因子下降,总表观活化能为33.87 kJ/mol;流速增加,Reynolds数增大,异丁醇渗透通量变化不大,但分离因子略有增大;微量乙酸异丁酯的存在可促进渗透汽化膜回收异丁醇。采用PDMS复合膜分离酯化废水中的异丁醇,回收率大于94.0%,渗余液中异丁醇浓度可降至0.1%(质量)左右。研究结果可为PDMS复合膜处理低浓度有机溶剂废水提供依据。  相似文献   

16.
采用流延法制备大面积的NaA/PAN分子筛复合膜,并用于渗透汽化分离二甲基甲酰胺/水(DMF/H2O)溶液。考察了料液组成、进料量和操作温度对膜分离性能的影响。实验结果表明:渗透通量随着温度的升高而增大,在DMF质量分数为20%,操作温度为24℃,料液量为1.5 m3/h,膜后侧压力为500 Pa的条件下,NaA/PAN膜的渗透通量达到1.84 kg/(m2·h),分离因子为11.5。  相似文献   

17.
徐荣  邹琳  张琪  钟璟 《化工进展》2016,35(10):3331-3336
采用有机硅烷γ-氨丙基三甲氧基硅氧烷(APTMS),对聚二甲基硅氧烷(PDMS)进行交联改性,以ZrO2/Al2O3陶瓷复合膜为支撑体,制备了一系列有机硅烷交联的PDMS/陶瓷复合膜。通过扫描电镜(SEM)、傅里叶红外光谱(FTIR)、热重分析(TGA)对改性效果和膜结构进行了表征。将所制备的PDMS/陶瓷复合膜应用于渗透汽化脱除模拟汽油中的有机硫化物(噻吩),考察了交联剂APTMS含量、操作温度、料液含硫量等因素对复合膜渗透汽化脱硫性能的影响。实验结果表明,有机硅烷交联的PDMS膜相比于传统正硅酸乙酯(TEOS)交联的PDMS膜,通量和硫富集因子均有所提高。随着进料温度和原料液中硫含量的升高,膜的渗透通量均增大,而硫富集因子均减小。当APTMS质量分数为15%、进料温度为25℃、噻吩质量浓度为100mg/kg时,渗透通量为0.46 kg/(m2·h),硫富集因子达到3.5。  相似文献   

18.
填充法改性PDMS膜及其对乙酸/水的渗透汽化分离性能   总被引:2,自引:1,他引:1  
用CTAB-蒙脱石填充改性PDMS膜,运用XRD, SEM等手段表征了不同填充量的复合膜结构,证明有机柱撑蒙脱石与聚合物形成插层型复合物后,膜的热稳定性明显改善. 研究了填充膜对乙酸/水体系的渗透汽化分离性能,结果表明,随着温度的升高,渗透通量增大而分离因子降低,通量随填充量增加单调上升,分离因子随填充量增加先增大后降低,填充量为7.4(%, w)时达到最大值. 从膜的结构及其与组分的相互作用对填充膜中蒙脱石可能存在的渗透通道作用进行了探讨.  相似文献   

19.
对自制聚乙烯醇(PVA)/聚丙烯腈(PAN)共混膜渗透汽化分离低浓度醋酸-水溶液体系的性能进行了研究。分别考察了操作温度、下游表压以及醋酸浓度对PVA/PAN共混膜渗透蒸发分离性能影响。结果表明,随着操作温度增大和醋酸浓度及下游压力的减小,膜的渗透通量增加,分离因子减小。在操作温度323 K、下游表压8 mm Hg的条件下,采用膜厚为45μm的PVA/PAN共混膜对90wt.%的醋酸-水体系进行渗透汽化分离,其渗透通量和分离因子分别达到3746 g·m-2·h-1和3.75。  相似文献   

20.
以聚偏氟乙烯(PVDF)为支撑层,选用疏水性纳米SiO_2粉体作为改性剂,制备出聚二甲基硅氧烷(PDMS)复合膜材料,并用于乙酸正丁酯/水溶液的渗透汽化分离。采用SEM、FTIR、XRD、拉伸实验、接触角及正电子湮没寿命谱测定等对膜材料物理化学性能进行了表征,考察了膜材料的溶胀行为及渗透汽化性能。结果表明,SiO_2在PDMS膜中分散均匀,且没有发生化学作用,并提高了膜材料的机械强度和疏水性。随着SiO_2添加量增加,膜在乙酸正丁酯溶液中的溶胀度先升后降,渗透通量呈下降趋势,而分离因子先增大后减小。当SiO_2添加量为4%(质量)时,随进料浓度的增加,渗透通量增大,分离因子先增大后减小;随着温度升高,渗透通量增大,分离因子减小;渗透通量和分离因子最大值分别为240 g·m~(-2)·h~(-1)和542。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号