首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用了MMS-200热力模拟机以40CrMnMo钢为实验对象进行了热压缩试验,研究了变形温度850℃~1150℃,变形量0.8,应变速率在0.01~10s~(-1)条件下实验钢的热变形行为。通过分析高温下变形参数对流变应力和奥氏体晶粒尺寸的影响,建立40CrMnMo钢的稳态动态再结晶晶粒尺寸模型。结果表明:变形温度为850℃~1150℃,实验钢在应变速率0.01~0.1s~(-1)下发生连续动态再结晶,应变速率1~10s~(-1)下发生动态回复。通过引入Zener-Hollomon(Z)参数表征变形参数对稳态动态再结晶晶粒尺寸的影响,建立了稳态再结晶晶粒尺寸的数学模型,得出提高应变速率或变形温度较低能使Z参数增大,峰值应力升高且动态再结晶晶粒减小。  相似文献   

2.
为了探究03Cr18NiMoN节镍双相不锈钢高温轧制变形机制和组织演变规律,利用Gleeble-3800热模拟试验机在变形温度为850~1 150℃,应变速率为0.01~10 s~(-1),变形量为50%条件下对其进行高温压缩研究。流变应力曲线在950~1 150℃的较高变形温度和0.01~0.1 s~(-1)低应变速率条件下呈现出明显动态再结晶特征。变形初期,试验钢的加工硬化率随变形温度的降低和应变速率的升高而增加,不利于动态再结晶软化。组织分析表明,随变形温度升高至1 050℃和应变速率降低,奥氏体动态再结晶更加充分,晶粒细化程度明显提高,而1 150℃高变形温度使奥氏体再结晶晶粒粗化。在950℃、0.01~1 s~(-1)的变形条件下,铁素体动态回复逐渐加强。热变形激活能Q=549.7 kJ/mol,高于2 205双相不锈钢(451 kJ/mol),表观应力指数n=6.079,表明其变形机制主要以体扩散引起的位错低温攀移为主。热加工图分析表明,失稳区域随应变量增加逐渐增大,结合流变应力曲线和显微组织分析,确定最佳加工区域为950~1 050℃的变形温度和0.01~0.018 s~(-1)的应变速率,且功率耗散因子处于较高(0.36~0.50)水平。此外,基于Z参数建立了试验钢的峰值流变应力本构方程。  相似文献   

3.
摘要:为了探究Custom 450钢的动态再结晶行为,采用Gleeble 3800热模拟试验机,在变形温度为1050~1200℃和应变速率为0.01~10s-1的变形条件下开展了单道次等温压缩试验。研究结果显示,在变形温度为1050~1200℃和应变速率为1.0~10s-1的变形范围内,钢虽发生了完全的动态再结晶,但应力应变曲线未表现出明显的应力峰值;钢的动态再结晶的晶粒尺寸随着变形温度的升高和应变速率的降低逐渐增大,当应变速率为001s-1时,动态再结晶晶粒发生长大。采用双曲正弦函数构建了Cutom 450钢的热变形方程,并建立了钢的动态再结晶动力学、临界应变、峰值应变及动态再结晶晶粒尺寸与Zener Holloman参数的定量关系。  相似文献   

4.
利用Gleeble-3500热模拟试验机在变形温度900~1 200℃和应变速率0.01~10 s-1范围内,对40Cr钢试样进行压缩实验。研究了40Cr钢真应力-应变曲线特征,建立了峰值应力、应变速率和变形温度间的本构方程,并确定了40Cr钢热变形激活能为310.625 kJ/mol。研究结果显示:40Cr钢热变形时的流变软化机制为动态回复和动态再结晶;随着变形温度增加和应变速率减小,流变应力减小;试样的变形温度越高,应变速率越低,显微组织中的动态再结晶越完全,并且动态再结晶晶粒越容易长大。  相似文献   

5.
通过Gleeble-1500热模拟试验机研究了321钢(/%:0.028C、0.69Si、1.21Mn、0.030P、0.001S、17.33Cr、9.19Ni、0.31Ti)单道次高温(900~1 200℃)压缩(0.01~1 s-1)时的动态再结晶。结果表明,变形温度越高,应变速率越低,321钢的软化作用越强,热变形条件下的真应力-真应变曲线一般没有明显的应力峰值,在应变速率0.01、0.1、1 s-1时321钢动态再结晶开始发生的温度分别为1 050、1 150、1 150℃;在1 200℃变形时,仍然只发生部分动态再结晶。321钢热变形激活能Q=422.72 kJ/mol,动态再结晶Z参数Z=εexp[422 720/(RT)],临界应变εc=0.035 67Z0.066 04。  相似文献   

6.
龚志华  何禛  包汉生  杨钢 《钢铁》2019,54(3):63-68
 为了解决2Cr12NiMo1W1V耐热钢在锻造过程中晶粒粗大和组织不均匀的问题,利用Gleeble-3800热模拟试验机,在变形温度为1 000~1 200 ℃、应变速率为0.01~10 s-1、变形量为70%的条件下,研究和分析了2Cr12NiMo1W1V耐热钢的高温塑性变形和动态再结晶行为。结果表明,该耐热钢的真应力-应变曲线具有动态再结晶特征。再结晶晶粒尺寸随着变形温度的增加或应变速率的降低呈增加趋势,在变形温度为1 150~1 200 ℃,应变速率为0.01 s-1时,晶粒尺寸急剧增加。在真应力-应变曲线的基础上,建立了材料热变形本构方程,其热激活能为453.74 kJ/mol。根据峰值应力绘制了合金的热加工图并获得在各加工条件下的效率值,合金的最佳热加工区间为变形温度为1 000~1 150 ℃、应变速率为0.1~1 s-1以及变形温度为1 060~1 125 ℃、应变速率为0.1~10 s-1。  相似文献   

7.
《钛工业进展》2018,35(5):29-32
通过Thermecmaster-Z热模拟试验机,对TC27钛合金在变形温度900~1 150℃和应变速率0. 01~10 s~(-1)范围内进行等温恒应变速率热压缩实验,压缩变形量为50%。结果表明,流变应力随应变的增加迅速增大,达到峰值后随应变的增加而减小,最后趋于相对稳定。流变应力随着温度的增加而减小,随着应变速率的增加而增大。TC27钛合金加工图有2个耗散效率峰值区,一个是900℃/0. 01 s~(-1),此区域变形时出现动态回复;另一个峰值区为1 050℃/0. 01 s~(-1),此区域变形时出现再结晶。  相似文献   

8.
为制定中温中压容器用钢13MnNiMoR的热加工工艺提供理论依据并实现其工业化生产,利用单道次热压缩模拟实验研究了变形温度(900~1150℃)和应变速率(0.01~1s~(-1))对其热变形行为的影响.结果表明:当应变速率低于0.1s~(-1)时,新晶粒有足够的时间进行形核和长大,奥氏体容易发生动态再结晶;当变形温度降低或应变速率增加时,实验钢在变形过程中主要发生动态回复,流变应力也随之提高.基于测定的流变应力曲线,通过拟合得到实验钢在热变形时的应力指数为4.29,动态再结晶激活能为319kJ/mol,据此建立了13MnNiMoR钢在高温变形时的热加工方程.  相似文献   

9.
采用Gleeble-3800型热模拟机试验研究了34CrMo4H钢在900~1 200℃、应变速率0.1~10s~(-1)时的高温热压缩行为,分析了热压缩变形时材料的流变应力与变形温度、应变速率之间的关系,确定了该钢的流变应力本构方程。结果表明,34CrMo4H钢在热压缩时流变应力随形变温度的升高而减小,随应变速率的增加而增大。应变速率小于0.1 s~(-1)时,该钢应力-应变曲线表现出明显的动态再结晶特征。34CrMo4H级钢的变形激活能为395.45kJ/mol。  相似文献   

10.
采用Thermecmastor-Z热模拟试验机研究了EH40船板钢在850~1 050℃,0.005~10 s~(-1)条件下的热变形行为,通过动态材料模型得到该区域的热变形与变形抗力方程并建立了EH40船板钢热加工图。结果表明,EH40船板钢的变形抗力模型的预测值与试验值吻合良好,EH40船板钢的热变形激活能为324.479 kJ/mol,由热加工图确立出EH40船板钢最优的热加工窗口是应变不高于0.4,温度在850~1 050℃,应变速率为小于10 s~(-1)的加工区域,较易发生动态再结晶。  相似文献   

11.
Q235钢的热变形特性   总被引:1,自引:0,他引:1  
通过热模拟压缩试验,研究了Q235钢热变形时的动态再结晶行为,确定了其热变形激活能,建立了峰值应力、峰值应变、晶粒尺寸与Zener-Hollomon参数之间的关系模型.结果表明:Q235钢的动态再结晶主要发生在形变温度≥900℃、应变速率≤5 s-1(即lnZ≤37.77)的条件下.  相似文献   

12.
《钢铁钒钛》2021,42(2):161-166
在Gleeble-3500D热模拟机上采用单道次等温压缩试验,系统研究了GH4169合金在变形温度为900~1 150℃、应变速率为0.01~10 s~(-1)、变形量为10%~70%条件下的动态再结晶行为,确定了合金在不同变形条件下的完全再结晶条件,绘制了再结晶图,给出了该合金变形的热加工图。研究结果表明:GH4169合金随变形过程温度的升高而再结晶程度增大,变形量越大、应变速率越慢,发生完全动态再结晶的温度区间越宽;在应变速率为0.01 s~(-1)时变形过程中经历了变形-回复-再结晶-晶粒长大的完整过程;而应变速率为10 s~(-1)条件时,仅发生了变形-回复-(完全/部分)再结晶的过程,晶粒还未有充分长大的动力学条件;随着变形量增加,GH4169合金的易加工区间(η)和稳定加工区间(■)越宽,在变形量为70%时温度为965~1 134℃,应变速率0.02~10 s~(-1)范围内,(■)大于0,处于加工稳定区。  相似文献   

13.
利用Gleeble-1500热模拟压缩试验获得了26MnB5钢在880~1000℃、0.01~10s-1、最大变形55%条件下的真应力-真应变曲线,研究了26MnB5钢在试验条件下的动态再结晶行为.结果表明:26MnB5的真应力-真应变曲线在高温、低应变速率条件下出现明显峰值点特征,意味着样品发生了动态再结晶;26MnB5再结晶程度和奥氏体晶粒均匀度随温度的增加或应变速率的降低而提高,而晶粒平均尺寸则表现出先减小后增大的趋势;利用Johnson-Mehl-Avrami(JMA)方程可以建立26MnB5钢动态再结晶动力学模型,模型预测值与实测值基本吻合.  相似文献   

14.
采用Gleeble 3500热模拟机,研究了D36船板奥氏体的再结晶温度以及奥氏体的变形温度、变形量和变形速率对热变形奥氏体再结晶的影响。结果表明:当变形速率为0.1~1 s-1、温度达到950℃时,开始发生动态再结晶;当变形速率为5 s~(-1)、温度在1 000~1 050℃时,发生动态再结晶;当变形速率为10 s~(-1)时,不发生动态再结晶。当变形温度为1 050℃、单道次变形率在10%~20%时,D36钢在10s左右的道次间隔内发生了完全的静态再结晶。当单道次变形率在20%以上,D36钢在5 s左右的道次间隔内发生了完全的静态再结晶。  相似文献   

15.
Cu-P-Cr-Ni-Mo耐候钢高温变形奥氏体的动态再结晶   总被引:1,自引:0,他引:1       下载免费PDF全文
用Gleeble-3500热模拟试验机研究了Cu-P-Cr-Ni-Mo耐候钢(%:0.10C、0.075P、0.65Cr、0.22Ni、0.43Mo、0.28Cu)在应变速率0.01~1 s-1、温度850~1150℃时的动态再结晶行为,得出该钢奥氏体区的真应力-真应变曲线和动态再结晶图,分析了变形参数对峰值应力的影响和不同热变形时耐候钢的动态再结晶体积分数与真应变的关系,建立了该钢的奥氏体热变形方程、动态再结晶临界条件回归方程和奥氏体动态再结晶体积分数数学模型。结果表明,随变形温度升高,峰值应力下降;随变形速率增大,峰值应力升高;随Z参数增大即变形温度降低,应变速率增加,发生再结晶的临界应变εc和发生完全再结晶的应变εs均呈线性增加。  相似文献   

16.
通过热模拟压缩试验,研究了等轴组织和魏氏组织Ti80合金在温度850~1000℃、应变速率0.01~10 s~(-1)、变形量20%~60%条件下的热变形行为及组织演变。结果表明:Ti80合金为温度敏感型和应变速率敏感型材料,两相区变形时软化机制以动态再结晶为主,单相区变形时以动态回复为主。低应变速率条件下(0.01 s~(-1)),等轴组织的流变应力峰值高于魏氏组织,高应变速率条件下(1~10 s~(-1))则相反。相同变形参数下,原始组织类型对合金显微组织演变有显著影响。在β相变点以下,随着变形温度升高,等轴组织基体中初生α相减少,次生片状α相破碎形成不规则小颗粒;魏氏组织晶界α相完全破碎,β晶粒内部大部分片状α相破碎形成等轴颗粒,只保留少量不同位向集束状α相。随着变形量增大,等轴组织中α相再结晶晶粒尺寸增大明显,魏氏组织中集束片状α相逐渐被破碎,形成细小的短条状和等轴再结晶α晶粒。  相似文献   

17.
采用Gleeble3800热模拟试验机,研究了0.3%V改型07Cr25Ni21NbN试验钢在930~1 230℃、0.005~5s~(-1)条件下的热变形行为。利用金相显微镜观察了试验钢微观组织随热加工条件的变化。分析了试验钢的流变应力曲线,得到其热形变激活能为571kJ/mol。真应变分别为0.4和0.8条件下,建立了试验钢的热加工图,发现真应变为0.8的热加工图上有3个耗散功峰值区域的边界。变形温度为1 230℃,变形速率从0.005到5s~(-1)时,试验钢的微观组织由粗大的锯齿晶粒过渡到较细小的等轴晶粒。当变形速率为0.5s~(-1)时,变形温度从930℃提高到1 230℃时,微观组织由等轴组织、部分动态再结晶组织过渡到流变失稳组织。  相似文献   

18.
摘要:采用Gleeble-3500热模拟试验机,在温度为950~1150℃、应变速率为0.1~10s-1和变形量为65%的条件下研究了CSP热轧TRIP钢的动态再结晶行为,探讨了初始奥氏体晶粒尺寸对TRIP钢动态再结晶行为的影响。研究结果表明,初始奥氏体晶粒尺寸越小,变形温度越高,应变速率越慢时,TRIP钢中奥氏体越易发生动态再结晶。其中,粗晶试样(初始奥氏体晶粒尺寸为767.54μm)在1050~1150℃内变形时,将发生动态再结晶。其热变形激活能为361539.17J/mol,确定了Zener-Holloman参数与应变速率和温度的关系式,建立了动态再结晶临界应变模型、高温奥氏体流动应力模型和动态再结晶晶粒尺寸模型,理论模拟结果与试验结果吻合较好。  相似文献   

19.
黄顺喆  厉勇  王春旭  韩顺  刘宪民  田志凌 《钢铁》2014,49(7):107-113
 在Gleeble-3800热模拟试验机上对9310钢进行了900~1 200 ℃温度范围内的高温轴向压缩试验。基于动态材料模型理论(DMM),在Prasad和Murthy 2种流变失稳准则下建立了9310钢的热加工图,并结合变形过程中的显微组织进行了热加工参数优化的分析。结果表明,本试验条件下,9310钢热变形在Prasad和Murthy流变失稳准则下的稳定性函数[ξ(ε·)]均大于0;在变形条件为950~1 050 ℃,0.01~0.1 s-1时具有最佳的热加工性能,此区域内功率耗散率值均大于32%;能量耗散功率恒定时,变形温度对动态再结晶晶粒尺寸起主导作用,变形温度恒定时,高应变速率下的动态再结晶晶粒更加细小均匀。  相似文献   

20.
采用单道次热压缩试验,研究了904L钢在不同变形温度、不同应变速率下的真应力-应变曲线以及组织形貌,阐明了热加工过程中热变形参数对其在变形过程中发生的动态再结晶行为及微观组织演变规律的影响,揭示了其相应的软化机制。结果表明:变形温度越高,流变应力越小,动态再结晶体积分数越高,晶粒尺寸越大;同温度下,变形速率越小,应力峰值越小,晶粒尺寸越大且晶界越平直化;904L钢的动态再结晶行为随着变形温度的升高,应变速率的减小,应变量的增大而进行得越充分且较高的变形温度有利于动态再结晶的进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号