首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 597 毫秒
1.
用石墨炉原子吸收光谱法测定土壤样品中Pb和Cd时,有时候直接按照方法标准GB/T 17141—1997操作,测定结果不能满足质控要求。研究结果表明,目标元素系列标准溶液中,分别含和不含土壤基体元素Na、Mg、Al、Si、Fe、Ca等元素混合成分时,校准曲线斜率明显不同。为减小基体效应的影响,基于文献调研和实验结果,对上述方法标准实验步骤进行了下列改进:(1)取相同体积实际样品消解液混合后,定量加入到用于建立校准曲线的系列标准溶液中,用于基体匹配;(2)对消解液进行适度稀释,仍采用标准溶液建立校准曲线。用4个土壤标样和土壤样品加标测定结果对改进后的方法进行了验证,结果表明,基体稀释法测定Pb的回收率范围分别为90.4%~114%;测定低含量Cd时,回收率范围为84.1%~125%。基体匹配法测定Pb和Cd的回收率范围分别为93.0%~105%和102%~119%,基本满足土壤样品中重金属回收率为80%~120%的质控要求。样品中痕量镉在测定下限附近时,应严格控制稀释倍数,或采用基体匹配法测定。改进后的操作步骤适合日常检测工作中大批量土壤样品中Pb和Cd的准确测定。  相似文献   

2.
铜锍经混合酸消解溶样处理,标准溶液中加入一定含量的Cu,Fe进行基体匹配,电感耦合等离子体发射光谱法测定矿样中镉、砷、铅、锌含量。方法基体效应较小,各待测元素之间没有明显干扰。使用该法分析有证标准物质和实际样品,分析结果与认定值和其他常规方法测定值一致,均在允许误差范围内。方法的回收率:Cd为85%~93%,As为90%~98%,Pb为92%~111%,Zn为92%~107%;方法的精密度(RSD,n=12)为0.75%~2.55%。与现行的单元素分析方法相比,分析周期短,适用于工厂中间产物和大宗铜锍商品  相似文献   

3.
胡璇  李跃平  石磊 《冶金分析》2014,34(4):17-20
从铸造锌合金中铝和铜含量的测定准确度、精密度和回收率方面, 比较了用基体匹配法和内标法校正电感耦合等离子体原子发射光谱(ICP-AES)法测定铸造锌合金中高含量铝和铜的光谱干扰效果。结果表明:基体匹配法在测定铸造锌合金中铝的相对误差小于0.4%, 较内标法低, 回收率稳定在105%~108%之间;内标法测定铝和铜时的相对标准偏差在0.2%~0.5%之间, 明显低于基体匹配法, 其中以钪(Sc)作为内标元素测定铜的准确度、精密度和回收率均较高, 而以Y作为内标元素测定铝的效果较好。  相似文献   

4.
以往采用火焰原子吸收光谱法(FAAS)测定纯铜和铜合金中铅时,多采用分离富集法对铅进行富集或者采用标准加入法绘制校准曲线以消除基体的影响,操作较为繁琐。实验考察了不同含量铜基体对铅测定的影响,结果表明,当溶液中铜的质量浓度不大于20mg/mL时,铜对铅测定的影响基本可忽略,当溶液中铜的质量浓度为20~80mg/mL时,铜对铅测定的干扰不可忽略。因此实验提出,对于铅质量分数不小于0.05%的样品,采用铅标准溶液系列直接制作校准曲线,对于铅质量分数小于0.05%的样品,采用不含铅的高纯铜进行基体匹配绘制校准曲线的方法以消除基体干扰,最终实现了FAAS对纯铜和铜合金中质量分数大于0.002%的铅的测定。考察了酸介质和酸度对测定的影响,最终选择硝酸(1+1)溶解样品。根据不同样品量和不同的稀释因子,通过计算设计了3种系列标准溶液绘制校准曲线,使得校准曲线用标准溶液中酸的浓度与样品溶液中酸的浓度相同从而避免了酸度对测定的影响。将实验方法应用于纯铜、铜合金标准样品中质量分数在0.004%~2.7%之间铅的测定,测得结果与认定值基本一致,相对标准偏差(RSD,n=7~9)为0.7%~1.8%。  相似文献   

5.
刘稚  丁仕兵  闵国华  王越 《冶金分析》2010,30(11):54-57
用王水微波消解样品,样品溶解后用氢氟酸挥硅,高氯酸蒸发,盐酸溶解盐类,然后用电感耦合等离子体原子发射光谱法测定溶液中Al,Pb,Co,Cr,Cu,Mg,Mn,Ni,Zn,P,Ca 11个元素。硅对铝的测定有影响,但在试样溶解后已通过氢氟酸挥硅将其除去;基体元素铁产生背景干扰,绘制校准曲线时通过在标准系列溶液中加入与试液同量的铁而消除。本法已用于进口氧化铁皮样品11种元素的分析,相对标准偏差小于8%,回收率在95%~106%范围。  相似文献   

6.
利用电感耦合等离子体原子发射光谱法(ICP-AES)测定高纯钼样品中杂质元素含量时,由于钼元素具有丰富的谱线,因此钼基体对待测元素干扰较大。为了消除钼基体对待测元素的干扰,实验使用过氧化氢溶解样品,过量硝酸沉淀分离钼基体作为样品前处理步骤,建立了基体分离-电感耦合等离子体原子发射光谱法测定高纯钼中钙、铬、铜、钴、镁、镍、锌、镉和锰的方法。使用4mL过氧化氢溶解样品,10mL硝酸沉淀钼基体,钼的沉淀效率大于99%,沉淀后,各待测元素背景等效浓度均有下降,且回收率都高于85%,随沉淀损失较少。使用高纯钼基体沉淀分离的方法配制校准曲线,各待测元素校准曲线线性相关系数均大于0.9997;方法中各元素的定量限为0.20~2.03μg/g。实验方法用于测定高纯钼样品中钙、铬、铜、钴、镁、镍、锌、镉和锰,结果的相对标准偏差(RSD,n=5)为2.0%~4.8%,测定结果与电感耦合等离子体质谱法(ICP-MS)结果一致。  相似文献   

7.
采用电感耦合等离子体发射光谱法(ICP-OES)测定镧铁合金中铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇稀土杂质元素。镧铁合金试料在硝酸介质中,以近似基体匹配法校正基体对测定的影响,直接以氩等离子体光源激发,用标准曲线法进行光谱测定。为选择合适的分析线,先根据光谱波长表预选几条强度大,激发电位低的谱线,然后对此谱线进行轮廓扫描,从而选出一条背景平坦,信背比大,基体及共存元素干扰少或无干扰的谱线作为分析线。用基体匹配法配制标准溶液,根据产品标准XB/T 407—2020指标,以铁(85 %)与镧(15 %)配制成混合基体,配制6个系列标准溶液进行曲线绘制。该方法适用于铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇含量在0.005 %~0.25 %的分析测定。方法的相对标准偏差(n=11)在0.74 %~2.58 %之间,用标准加入法对方法的回收率进行试验,测得回收率在91.75 %与107.75 %之间, 能满足产品测定要求。   相似文献   

8.
任玲玲 《冶金分析》2018,38(2):71-75
使用盐酸-氢氟酸并采用微波消解处理炉渣样品,选择B 182.577nm或B 249.678nm为分析线,在基体没有明显干扰的情况下,选择自动匹配法(FITTED)进行谱线校正并扣除相应背景,采用高纯物质进行基体匹配后,配制标准溶液系列,建立了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定炉渣系列样品中硼元素含量的方法。硼的质量分数为0.0006%~0.25%(B 182.577nm)或0.0008%~0.25%(B 249.678nm)范围内校准曲线呈线性,线性相关系数r均不小于0.9998;方法中硼的检出限小于0.0002%。方法应用于炉渣样品中硼的测定,结果的相对标准偏差(RSD,n=6)小于3%,加标回收率为96%~102%,与电感耦合等离子体质谱法(ICP-MS)进行比较,测定结果较为满意。  相似文献   

9.
采用在密闭塑料瓶中硝酸、氢氟酸常温常压分解样品,系统分析了样品中痕量杂质元素V、Ti、Mo、Fe、Sb、Pb、As、Co、Mg、Ca、Mn、Al、Sn、Na、K、Ni、Cr、Cd、Si、Cu、P、Bi的光谱干扰情况及钨酸沉淀分离基体后各元素的回收率情况,最终确立了电感耦合等离子体原子发射光谱(ICP-AES)法测定钨产品中痕量元素的方法。V、Ti由于基本不受基体干扰,钨酸沉淀分离基体后回收率较低,采用在校准曲线中补加基体的方法对其进行测定,其中V的测定下限为5.2μg/g,Ti的测定下限1.3μg/g:Co、Mg、Ca、Mn、Al、Na、K、Ni、Cr、Cd、Si、Cu、Pb、Sn、As、Sb、Bi等元素,受钨基体干扰比较严重,采用钨酸沉淀分离基体后,回收率均在90.0%以上,故采用沉淀分离基体,水标直接测定,各元素的测定下限均在0.10~6.7μg/g之间:而对于受钨基体严重干扰,而且钨酸沉淀分离基体后回收率较低的Fe、Mo、P3元素,目前没有很好的解决方案。此方法为解决钨产品中痕量杂质元素测定提供了一种有效可行的方法。  相似文献   

10.
采用硝酸、氢氟酸和高氯酸冒烟溶解样品,选取Nb 322.548nm、V 310.230nm和Zr 319.418nm为分析谱线,采用基体匹配法配制标准溶液系列并绘制校准曲线消除基体效应的影响;使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铌、钒和锆,从而建立低碳低钛硅铁中铌、钒和锆的测定方法。共存元素的干扰校正试验表明,样品中共存元素对待测元素无干扰影响。各待测元素校准曲线的线性相关系数均大于0.9995;各元素的检出限分别为0.0006%,0.0005%和0.0005%。实验方法应用于低碳低钛硅实际样品中铌、钒、锆的测定,结果的相对标准偏差(RSD,n=10)为1.2%~4.7%,回收率为98%~104%。按实验方法测定低碳低钛硅铁样品中铌、钒、锆,测定结果与YB/T 4395—2014、GB/T 223.14—2000和GB/T 223.30—1994测定值相符。  相似文献   

11.
陈祝海 《黄金》2020,41(4):79-82
国家标准方法测定金矿石中的铅、锌、砷、铋、镉和汞需多次溶样,操作繁琐。研究建立了混合酸消解,电感耦合等离子体原子发射光谱法同时测定金矿石中铅、锌、砷、铋、镉和汞的分析方法。实验对混合酸加入量、氟化氢铵溶液加入量、消解温度、消解时间等影响因素进行了优化。该方法各元素加入标准物质回收率为98.0%~104.0%,测定结果的相对标准偏差(n=11)为0.60%~4.76%,且与国家标准方法测定结果一致,具有操作简单,一步消解、多元素同时测定,检测效率高等优点,适用于大批量金矿石样品的检测。  相似文献   

12.
活性炭样品经550 ℃高温焙烧后,以硝酸、氢氟酸和盐酸的混酸作为消解试剂,用微波消解法消解,电感耦合等离子体原子发射光谱法(ICP-AES)测定消解液中铁、锌、钙、镁和铅金属元素含量。试验结果表明:样品经高温焙烧后基体元素碳已除去,对测定没有干扰,因此可以直接用待测元素的标准溶液绘制校准曲线,不需要进行基体匹配。共存元素由于含量很低,在所选定的分析线下测定也没有干扰。方法的检出限如下:铁为0.02 μg/mL,锌为0.01 μg/mL、钙为0.01 μg/mL、镁为0.02 μg/mL,铅为0.05 μg/mL。样品测定结果的相对标准偏差(RSD)在1.7%~4.1%之间(n=9),回收率在94%~96%之间。  相似文献   

13.
程键 《冶金分析》2007,27(11):1-1
试验了电感耦合等离子体原子发射光谱法测定锌精矿及焙砂中铅、锑、砷、铜、镉、铁、钴、镍、银、铟10种杂质元素的方法,确立了最佳工作条件。样品用王水溶解,为防止锑的挥发,加入酒石酸作为络合剂。采用基体匹配方法消除基体干扰。标准加入回收率在95%~103%之间,相对标准偏差为0.5%~5.9%,应用于锌精矿及焙砂中杂质元质的测定,测定结果与化学法相符。  相似文献   

14.
采用微波消解样品,建立了一种快速测定钒钛烧结矿中钒、钛、铝、镁、锰、钾、钠、铅、锌9种元素的电感耦合等离子体原子发射光谱法(ICP-AES)。试样被王水消解后在选定分析谱线的波长下测定,基体和共存元素对测定元素没有光谱干扰,基体效应用基体匹配法消除。钒、钛、铝、镁的质量分数在0.01%~3.00%范围内,锰、钾、钠、铅、锌的质量分数在0.001%~0.35%范围内,校准曲线呈线性,线性相关系数(r)均大于0.999。方法应用于钒钛烧结矿标准样品的测定,上述元素测定值与认定值相符。对一钒钛样品中铝、钒、钛、锰、镁、锌、钾、钠和铅分别测量10次,测定结果的相对标准偏差(RSD,n=10)均小于5%,方法可以应用于生产检验中。  相似文献   

15.
使用盐酸并采用微波消解处理样品,选择Fe 238.204nm、Ca 317.933nm、Mg 285.213nm、Al 396.152 nm、Cd 214.438nm、Cr 267.716nm、Cu 324.754nm、Ni 221.647nm、Pb 220.353nm、Si 251.611nm、Tl 190.856nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铁、钙、镁、铝、镉、铬、铜、镍、铅、硅、铊,从而建立了氧化铟锡靶材中铁、钙、镁、铝、镉、铬、铜、镍、铅、硅、铊等痕量杂质元素的分析方法。各元素校准曲线线性相关系数均大于0.9995;方法中各元素的测定下限为0.30~1.78μg/g。按照实验方法测定2个氧化铟锡靶材样品中铁、钙、镁、铝、镉、铬、铜、镍、铅、硅、铊,结果的相对标准偏差(RSD,n=11)为1.1%~8.2%,加标回收率为92%~108%。  相似文献   

16.
提出了用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铸铁锅中铝、砷、镉、铬、铅、锑、铊7种对人体有害微量元素的方法。样品用硝酸、盐酸溶解后过滤或样品经硝酸、高氯酸冒烟后用王水溶解,然后选择Al 396.152 nm、As 193.759 nm、Cd 228.802 nm、Cr 267.716 nm、Pb 405.783 nm、Sb 206.833 nm、Tl 351.924 nm作为分析线,用电感耦合等离子体原子发射光谱法(ICP-AES)测定。Fe基体对待测元素的干扰通过在配制校准曲线溶液系列时进行基体匹配和采用干扰系数校正法消除。样品中硅、锰、铜对测定没有干扰。方法的检出限(w/%)为0.000 13(Al)、0.000 32(As)、0.000 03( Cd)、0.000 09(Cr)、0.000 93 (Pb)、0.000 59(Sb)和0.001 2(Tl)。方法应用于铸铁标准物质的分析,测定值与认定值相符;应用于铸铁锅实际样品的分析,回收率在92%~112%之间。  相似文献   

17.
采用盐酸-硝酸-氢氟酸并采用微波消解处理样品,高氯酸冒烟至尽干,加盐酸溶解盐类,选择Pb 220.353nm、Zn 206.200nm、Cu 327.393/Cu 324.752nm、As 193.696nm、Sb 206.836nm、Bi 190.171nm、Cd 214.440nm/Cd 226.502nm为分析谱线,使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铅、锌、铜、砷、锑、铋、镉,从而建立了银精矿中铅、锌、铜、砷、锑、铋、镉等杂质元素的分析方法。铅、锌、锑在0.50%~5.00%,铜、铋在0.10%~5.00%,砷在0.10%~3.00%,镉在0.050%~0.50%范围内校准曲线呈线性,线性相关系数r均大于0.9999。方法中各元素的检出限为0.001%~0.014%。实验方法用于测定两个银精矿样品中铅、锌、铜、砷、锑、铋、镉,结果的相对标准偏差(RSD,n=11)为0.74%~2.9%,并与相应的国标方法测定值相吻合(其中铅和锌采用火焰原子吸收光谱法(YS/T 445.9—2001),铜采用火焰原子吸收光谱法(YS/T 445.2—2001),砷和铋采用氢化物发生-原子荧光光谱法(YS/T 445.3—2001),锑参照采用氢化物发生-原子荧光光谱法(YS/T 445.3—2001),镉采用原子吸收光谱法(YS/T 445.8—2001))。按照实验方法测定两个银精矿样品中铅、锌、铜、砷、锑、铋、镉,并进行加标回收试验,回收率为96%~105%。  相似文献   

18.
针对区域地球化学调查样品,采用HCl-HNO3-HClO4-HF消解样品、王水提取技术,以59Co、60Ni、65Cu、66Zn、114Cd、208Pb作为测定同位素,采用间接经验公式校正质谱干扰,最终实现了电感耦合等离子体质谱法(ICP-MS)同时对Co、Ni、Cu、Zn、Cd和Pb等6种微量元素的测定。详细对比分析了HCl-HNO3-HClO4-HF消解法、王水消解法、微波消解法3种试样处理方法对土壤、水系沉积物和岩石成分分析标准物质的分析数据,结果表明,HCl-HNO3-HClO4-HF消解法和微波消解法的测定值与认定值相符;因微波消解法一次性处理样品数量有限,不适合大批量地质样品分析,故实验选取HCl-HNO3-HClO4-HF法对样品进行溶样。Co、Ni、Cu、Zn、Cd和Pb的校准曲线相关系数均达0.999 9以上,方法检出限(μg/g)分别为:Co 0.04,Ni 0.69,Cu 0.89,Zn 1.31,Cd 0.029,Pb 0.34。将方法应用于土壤、水系沉积物和岩石成分分析标准物质中6种金属元素的测定,结果与认定值基本一致,相对标准偏差(RSD,n=12)均小于8%。方法应用于实际区域地球化学调查样品分析,结果与X射线荧光光谱法(XRF)相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号