首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
张俊伟  贾新  林春山  王荣刚  张小林  尚栋 《炼铁》2023,(2):25-28+32
首钢股份3号高炉中修开炉后,炉缸侧壁局部温度持续上升,TE31349点热电偶温度最高升至439℃。认为炉缸中心不活跃、炉温维持较低水平、风口损坏漏水对炉缸侧壁和炉底砖衬薄弱部位的侵蚀加剧是炉缸侧壁温度升高的主要原因。通过采取加钛矿护炉、调整高炉操作制度、加大冷却强度、优化炉前操作等措施,炉缸侧壁温度普遍下降,TE31349点热电偶温度得以控制,稳定在120℃左右;2020年6—10月,高炉主要技术经济指标明显改善,特别是燃料比由545.68kg/t下降至513.12kg/t。  相似文献   

2.
针对济钢2#1750m3高炉炉缸侧壁G1和E1点温度上升的情况,采取了风口喂入含钛包芯线护炉措施,E1点温度从801℃下降到522℃,但G1点温度下降不明显。对喂线期间高炉操作参数的分析表明,喂线促进了炉缸的均匀,对高炉操作影响不大,为解决炉缸局部区域侵蚀提供了一种技术手段,但需要对喂线部位加强冷却。  相似文献   

3.
何敏  谢爱平  钱堃 《江西冶金》2021,41(1):48-53
新钢公司6号高炉2019年以来西铁口方向8.3 m标高处炭砖温度急剧上升,炉缸炭砖温度升高一般反映了陶瓷杯或炭砖受到了一定的侵蚀.通过采取改善炉缸工作、强化铁口工作、优化热负荷、压浆手段等措施,炉缸象脚形侵蚀区域各点温度均控制在合理的范围内.8.3 m西侧炭砖温度由最高的530℃下降至300℃以内.  相似文献   

4.
《炼铁》2019,(4)
宝钢1号高炉2017年以来炉缸温度出现4次异常升高的现象,认为主要是炉体热负荷波动及崩滑料、炉前作业状况不稳定、处理上不够果断等引起的。通过采取改善炉缸状态消除局部不均匀侵蚀、优化炉前作业制度稳定铁口区工作状态、建立炉缸温度异常预警机制等措施,高炉技术经济指标改善,同时炉缸温度处于安全、稳定受控范围。炉缸温度2号铁口测温点由最高的680℃下降至130℃,3号铁口测温点由最高的615℃下降至150℃。  相似文献   

5.
解虎航  王纪民  同文义 《炼铁》2019,38(2):50-53
汉钢2280m~3高炉炉缸侧壁07B、05B两点温度异常升高,最高温度分别达到957℃、856℃,严重威胁高炉的安全生产。简要分析了炉缸侧壁温度升高的原因,通过采取钒钛矿护炉、优化高炉操作制度、灌浆封堵、调整冷却制度、加强铁口维护和出铁管理等多方面措施,达到先稳定后降低炉缸侧壁温度的目的。截至2018年9月15日,炉缸侧壁07B、05B两点温度已分别降至423℃、411℃,高温点温度得到有效控制,消除了生产中的安全隐患。  相似文献   

6.
简要分析了湘钢1号高炉炉缸侧壁温度升高的原因,重点阐述了侧壁温度升高的治理措施。认为,长期高强度冶炼加剧了渣铁对炭砖的冲刷,炭砖受到侵蚀是导致1号高炉炉缸侧壁温度升高的根本原因。通过采取提高冷却强度、使用钒钛炮泥和钒钛球护炉、降低冶炼强度、调整风口布局等措施,1号高炉炉缸侧壁温度降到了报警值以内,803C点温度稳定在520℃左右,703C点温度稳定在650℃并呈继续下降趋势,炉缸侵蚀得到有效控制。  相似文献   

7.
邯钢8号高炉1号铁口下方炉缸侧壁热电偶温度开始升高,最高达到1 047℃,严重威胁高炉的安全生产。分析认为内衬侵蚀、焦炭质量下滑、出铁质量不高及炉缸窜煤气是此次炉缸侧壁温度升高的主要原因。通过采取适当降低冶炼强度、提高入炉钛负荷、发展中心气流、改善出铁方式及加强铁口冷却与监控等一系列治理措施,8号高炉炉缸侧壁温度得到了良好的控制,高温点的温度已降至200℃左右,各检测温度也降至安全生产状态。  相似文献   

8.
酒钢1号高炉炉缸侧壁北铁口、南铁口下方等处温度持续上升,点TE2507B最高达到923℃,威胁到安全生产。炉缸冷却壁与炭砖之间存在气隙、炉况较长时间存在异常、有害元素偏高、冶炼强度逐步增加是炉缸侧壁温度升高的主要原因。通过采取含钛炉料护炉、堵风口、优化高炉操作制度、灌浆及加强铁口维护等措施,炉缸侧壁温度上升趋势得到有效遏制,缸侧壁各点温度控制在500℃以内。  相似文献   

9.
介绍了1#高炉炉缸炉底结构的设计特点,结合炉缸炉底实测数据,计算了炉缸炉底1 150℃等温线的分布情况,分析了炉缸侧壁温度异常升高的原因,并提出改进措施,取得了良好的效果。  相似文献   

10.
马成伟  王金印  牛理国  李烁  陈龙 《炼铁》2020,39(1):28-31
对首钢京唐1号高炉炉缸侧壁温度升高后的护炉措施进行了总结。1号高炉炉役生产至10年之际,频繁发生局部炉缸炉衬热电偶温度升高的问题(TE31323上升至609℃),严重威胁安全生产。通过采取加钛矿护炉、强化冷却、调整布料制度、控制入炉碱金属、加强原燃料的管理等措施,炉缸侧壁高温点得以控制,保证了高炉安全生产,各项生产指标良好。  相似文献   

11.
冷却机在某厂转底炉项目工程中,置于转底炉下游,通过雾化喷嘴的冷却水喷射到冷却机外壁,可以有效将转底炉球团降温到300℃.实践表明,冷却机结构稳定,降温效果好,适宜用于转底炉的氧化球团冷却.  相似文献   

12.
针对天钢3200m~3高炉炉缸的侵蚀问题,分析出产生原因是热机械侵蚀和不理想的焦炭质量。通过采用钒钛矿护炉、增加冷却强度、增加温度检测点和冷却水温差检测等措施,显著改善了炉缸炉底侵蚀状况,将炉底中心点温度控制在370~460℃的合理范围内,减缓了炉缸的进一步侵蚀,保证了炉缸的活跃性。  相似文献   

13.
焦克新  张建良  刘征建  杨天钧 《钢铁》2020,55(8):193-198
 高炉长寿化是大型高炉发展的必然趋势,实现高炉长寿的关键在于弄清高炉侵蚀的根本原因。从高炉炉缸侵蚀机理、高炉炉缸象脚型侵蚀原因、高炉炉缸圆周方向侵蚀不均匀性、高炉冷却强度与冷却效率以及高炉炉缸维护技术等5个方面探讨了高炉长寿存在的共性问题,指出高炉炉缸炭砖损毁的本质是碳不饱和铁水对炭砖的溶蚀。具体结果表明,首先,高炉炉缸象脚型侵蚀最严重部位位于高炉炉缸死料柱的根部位置;其次,阐明了直接导致高炉存在不均匀侵蚀的主要原因在于冷却系统的冷却水量和送风系统的风量在高炉周向方向分配不均匀;然后,阐明了冷却系统的作用本质是降低耐火材料热面温度,并提出了高炉冷却强度指数及高炉冷却效率指数;最后,分析了采用无钛矿护炉和钛矿护炉两种模式的高炉炉缸维护技术。  相似文献   

14.
曹锋 《中国冶金》2013,23(1):36-38
高炉炉芯温度是炉缸活跃程度的重要表征。炉芯传热可作为一维稳态传热来处理,通过建立首钢京唐1号高炉炉芯传热的计算方程,计算绘出了炉芯温度-炉缸温度、炉芯温度-陶瓷垫厚度的关系线,确定了现阶段首钢京唐1#高炉合适的炉芯温度为310~380℃,分析得出炉芯温度低时,炉缸工况差,炉芯温度和铁水温度的相关性弱。  相似文献   

15.
武钢1号高炉炉底与炉缸长寿新技术   总被引:4,自引:0,他引:4  
许美兰  赵忠仁 《钢铁》2002,37(2):4-6
武钢1号高炉改造性大修,炉底与炉缸采用长寿新技术:增大炉缸容积,加深死铁层;选用半石墨炭砖和德国的高密质炭砖;炉底冷却采用软水密闭循环,以及设置完善的检测设施。总结运用钒钛矿护护经验,以减缓或消除炉底与炉缸“环缝”、“熔洞”、“蒜头状”侵蚀,达到炉底、炉缸高校长寿的目的。  相似文献   

16.
殷欢 《炼铁》2006,25(5):13-16
针对马钢1号2500m^3高炉2号铁口区域炉缸冷却壁水温差出现异常升高现象,采取了“以炉缸侵蚀模型为预警参数,以不定期开、堵风口为主要手段,加强铁口维护保持稳定的泥包并配合铁口压入含钛精粉炮泥进行局部修复”的护炉制度,逐步将炉缸水温差降至正常范围,保证了高炉最大限度地发挥产能,达到了护炉保产的目标。  相似文献   

17.
杨志荣 《钢铁》2015,50(1):31-36
 通过太钢2座4 350 m3高炉生产、操作炉型监控和维护的实践,认识到高炉上下部操作炉型之间有密切的相互作用关系,其对炉缸寿命有一定的影响。高炉上部的操作炉型受到炉腹煤气量、炉身部位耐火材料的选择以及炉身冷却水流向的影响。适当的炉腹煤气量、减少冷却板与砖衬间可能形成的窜气通道、冷却水横向分段、分区冷却有助于形成合理的上部操作炉型。炉身操作炉型与渣皮厚度具有相互作用关系,风口以上操作炉型对炉缸炉底的侵蚀和结厚也存在相互作用关系。通过维持炉芯死焦堆透气透液性、高炉炉身硬质压入以及钒钛矿护炉等措施,维持合理的上、下部操作炉型,改善了炉况顺行和操作指标,同时减缓炉缸侧壁的侵蚀。  相似文献   

18.
合理的炉缸冷却制度是保证高炉长寿的重要基础,从传热学的角度上对高炉冷却系统进行了深入探讨,分析了高炉炉缸传热数学模型的局限性,根据一维径向传热模型计算表明,增大冷却水流量可降低冷却水温差,但对增强炉缸冷却强度效果甚微。分析了冷却水对高炉炉缸的重要作用在于提高临界热流强度,防止出现核态沸腾和膜态沸腾。在炉缸结构一定的条件下,炉缸导出的热量主要取决于铁水的流动状态及铁水温度,最后给出炉缸砖衬出现缝隙的判定条件。  相似文献   

19.
陈俊 《中国冶金》2016,26(4):38-42
阐述宣钢高炉长寿高效生产技术的应用情况及效果,提出适合宣钢原燃料条件下高炉长寿高效生产的合理途径。从施工设计到操作管理,逐渐形成具有宣钢特点的高炉长寿高效生产技术:采用经济合理的“扬冷避热型梯度布砖法”,建立健全中钛冶炼条件下炉缸活跃指数管理机制,严格控制钾、钠、锌等有害元素质量分数,减少炉缸气隙,使高炉实现长寿高效生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号