首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
认知MIMO干扰网络的顽健干扰对齐算法   总被引:1,自引:0,他引:1  
针对重叠式认知MIMO干扰信道状态信息(CSI)非理想的问题,提出一种顽健干扰对齐算法。首先通过欧几里得球形不确定性刻画非理想CSI,以最小化用户干扰泄漏为目标,构建非理想CSI条件下发送预编码和接收干扰子空间矩阵的优化模型;然后利用矩阵范数的不等式性质,推导了最差条件下的主用户干扰温度约束;最后采用拉格朗日部分对偶及次梯度更新方法,推导出收发矩阵之间的迭代关系,并从理论上分析了顽健算法的适用条件和可达自由度范围。仿真结果表明,所提算法具有较好的顽健性,且获得的次用户网络性能优于已有算法。  相似文献   

2.
OFDM认知无线电系统中多用户资源分配新算法   总被引:1,自引:0,他引:1  
OFDM是认知无线电系统物理层的关键技术,本文针对多用户的OFDM认知无线电系统,提出了一种联合功率、信道和比特分配的新算法,该算法将多用户资源分配映射成多维O-1背包问题,考虑了主次用户之间的干扰,引入了次用户的带宽需求,既保证了次用户对主用户干扰功率的限制,同时又满足了各个次用户的QoS.仿真结果表明,本文的算法与...  相似文献   

3.
针对能效提升、宏用户干扰减小的问题,该文研究了基于干扰效率最大的异构无线网络顽健资源分配算法.首先,考虑宏用户干扰约束、微蜂窝用户速率需求约束和最大发射功率约束,将资源优化问题建模为多变量非线性规划问题.其次,考虑有界信道不确定性模型,利用Dinkelbach辅助变量方法和连续凸近似方法结合对数变换方法,将原分式规划顽健资源分配问题转换为等价的确定性凸优化问题,并利用拉格朗日对偶算法获得解析解.理论分析了计算复杂度和参数不确定性对性能的影响.仿真结果表明该算法具有较好的干扰效率和鲁棒性.  相似文献   

4.
在资源受限的认知无线电网络中,如何提高次用户网络的功率利用率是一个值得考虑的问题。针对这个问题,本文首先提出了认知无线电网络中基于功率有效性的次用户最优功率分配算法,该算法不仅考虑主用户网络中断概率对次用户发射功率的限制,而且兼顾次用户网络本身的中断概率要求。其次,为了进一步降低节点的计算复杂度,本文通过降维处理将目标最优化问题转化为两个子问题进行求解,从而提出一种次优的低复杂度功率分配算法。仿真结果表明,次优算法相比最优算法仅带来有限的性能损失,但是却有效地节省了计算时间和存储空间;此外,当中继节点靠近源节点时更有利于系统功率效率的提高,源节点到目的节点链路相比中继链路对系统的性能影响更大。   相似文献   

5.
对多天线协作双向认知无线电系统中的波束成形算法进行了研究。在多天线协作双向认知无线电系统中,2个主用户系统通过次用户进行信息交换,次用户配置多个天线,且次用户通过叠加信号后将其发送给主用户,所以对分配发送主用户和次用户信息的信号的功率以及设计主用户和次用户的波束成形矩阵等进行了重点研究。依据最大化系统容量的优化准则,得到的优化问题均是非凸问题,因此采用半正定优化和二阶圆锥优化,得到闭合解。仿真结果表明,此方法优于以往的波束成形算法。  相似文献   

6.
本文针对由一条授权通信链路和多条次用户干扰信道组成的认知多输入多输出(Multiple Input Multiple Output,MIMO)系统,首先提出了基于信号子空间的认知干扰对齐迭代优化算法,并且利用单调有界理论证明了该算法可以收敛到稳定点。为了进一步提升系统的和速率性能,提出了一种联合信号子空间和功率分配的增强认知干扰对齐算法。该算法通过在每个次用户的多个数据流之间进行自适应功率分配,解决了次用户的有用信号空间中总是有残余的干扰信号的问题。数值仿真结果表明,相对于传统的认知干扰对齐算法,所提的算法能够获得较为明显的性能提升。   相似文献   

7.
孙沛然  王可人  冯辉 《电讯技术》2016,56(7):788-793
在认知无线电中,由于次用户干扰门限要求的存在,传统频谱功率分配方式获得的次用户有效信道容量较低。针对这一问题,提出了一种基于粒子群算法的频谱功率分配算法。首先建立基于干扰距离的认知网络干扰模型,将频谱功率分配问题转化为函数优化问题,并借助混合随机变异思想的粒子群算法进行求解;针对寻优过程中的约束问题,提出了一种基于投入产出比的外点法,保证粒子群在可行域中寻优,最终获得频谱功率分配。仿真结果表明,与传统算法相比,所提算法能够获得较高的次用户有效信道容量。  相似文献   

8.
基于干扰温度模型,应将认知无线电网络中认知用户与主用户共享频谱时应满足各自的用户服务质量(QoS)问题转化为有约束的非线性功率控制优化问题。运用迭代算法和拉格朗日相关理论探讨出一种近似最优的功率分配算法。理论分析和仿真表明,该算法既能满足主用户的干扰温度容限,同时又能使认知用户获得很好的信噪干扰比,增大系统的吞吐量。  相似文献   

9.
滕志军  韩雪  杨旭 《电信科学》2011,27(8):63-67
基于博弈论对认知无线电网络中的功率控制问题进行了建模分析,提出了一种基于多次博弈的功率控制算法,证明了该算法中纳什均衡的存在性和惟一性。仿真结果表明,基于该博弈模型的功率控制算法收敛性比传统算法好,经过7次左右迭代即可收敛,满足系统实时性要求,同时又能够以较低的功率水平满足不同用户对信干比的要求,实现了对不同用户发射功率的有效控制,系统性能明显提高。  相似文献   

10.
康桂华  李慧  荣慰 《移动通信》2011,35(5):53-56
文章在已知主用户干扰门限的基础上,对认知用户的子载波和功率进行合理分配;阐述了使认知用户系统容量达到最大的最优功率分配算法,给出了易于实现的次优算法,并与传统功率分配算法进行比较。仿真结果表明,在给出不同干扰门限的条件下,认知用户采用最优算法比传统算法获得的发射功率要高,并且次优算法的性能接近最优算法。  相似文献   

11.
Due to limited cooperation among users and erratic nature of wireless channel, it is difficult for secondary users (SUs) to obtain exact values of system parameters, which may lead to severe interference to primary users (PUs) and cause communication interruption for SUs. In this paper, we study robust power control problem for spectrum underlay cognitive radio networks with multiple SUs and PUs under channel uncertainties. Precisely, our objective is to minimize total transmit power of SUs under the constraints that the satisfaction probabilities of both interference temperature of PUs and signal-to-interference-plus-noise ratio of SUs exceed some thresholds. With knowledge of statistical distribution of fading channel, probabilistic constraints are transformed into closed forms. Under a weighted interference temperature constraint, a globally distributed power control iterative algorithm with forgetting factor to increase convergence speed is obtained by dual decomposition methods. Numerical results show that our proposed algorithm outperforms worst case method and non-robust method.  相似文献   

12.
The problem of joint beamforming and power allocation for cognitive multi-input multi-output systems is studied via game theory. The objective is to maximize the sum utility of secondary users (SUs) subject to the primary user (PU) interference constraint, the transmission power constraint of SUs, and the signal-to-interference-plus-noise ratio (SINR) constraint of each SU. In our earlier work, the problem was formulated as a non-cooperative game under the assumption of perfect channel state information (CSI). Nash equilibrium (NE) is considered as the solution of this game. A distributed algorithm is proposed which can converge to the NE. Due to the limited cooperation between the secondary base station (SBS) and the PU, imperfect CSI between the SBS and the PU is further considered in this work. The problem is formulated as a robust game. As it is difficult to solve the optimization problem in this case, existence of the NE cannot be analyzed. Therefore, convergence property of the sum utility of SUs will be illustrated numerically. Simulation results show that under perfect CSI the proposed algorithm can converge to a locally optimal pair of transmission power vector and beamforming vector, while under imperfect CSI the sum utility of SUs converges with the increase of the transmission power constraint of SUs.  相似文献   

13.
Since the nature of mobility and unreliability in wireless communication system may degrade the communication performance, robustness is one of the main concerns in cognitive radio networks (CRNs). In CRNs, the existing power control algorithms based on the assumption of exact system information may not guarantee the communication requirements due to the parameter uncertainties in real system. In this paper, we propose a robust distributed power control algorithm for underlay CRNs. The novelty in our paper is that we consider all possible parameter uncertainties: channel uncertainty and interference uncertainty. Our objective is to maximize the total throughput of secondary users while channel gain and interference plus noise are uncertain. According to the robust optimization theory, uncertain parameters are modeled by additive uncertainties with bounded errors. Through the worst case principle, we transform the robust power control problem into a deterministic optimization one, which is solved by using Lagrange dual decomposition method. Numerical simulation results show that the proposed algorithm can satisfy the QoS requirements of both secondary users and primary users for all uncertainty realizations.  相似文献   

14.
One of the most challenging problems in dynamic resource allocation for cognitive radio networks is to adjust transmission power of secondary users (SUs) while quality of service needs of both SUs and primary users (PUs) are guaranteed. Most power control algorithms only consider interference temperature constraint in single user scenario while ignoring the interference from PUs to SUs and minimum signal to interference plus noise ratio (SINR) requirement of SUs. In this paper, a distributed power control algorithm without user cooperation is proposed for multiuser underlay CNRs. Specifically, we focus on maximizing total throughput of SUs subject to both maximum allowable transmission power constraint and SINR constraint, as well as interference temperature constraint. To reduce the burden of information exchange and computational complexity, an average interference constraint is proposed. Parameter range and convergence analysis are given for feasible solutions. The resource allocation is transformed into a convex optimization problem, which is solved by using Lagrange dual method. In computer simulations, the effectiveness of our proposed scheme is shown by comparing with distributed constrained power control algorithm and Nash bargaining power control game algorithm. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
孙杰  郭伟  唐伟 《通信学报》2011,32(11):110-116
为解决无线多跳网络在固定频谱分配方式下所固有的信道冲突等问题,利用认知无线电的动态频谱分配技术,提出了一种适用于次用户组成的无线多跳网络的、underlay方式下的全分布式频谱分配算法。该算法将频谱分配问题建模成静态非合作博弈,证明了纳什均衡点的存在,并给出了一种求解纳什均衡点的迭代算法。大量仿真实验证明,该算法能实现信道与功率的联合分配,在满足主用户干扰功率限制的同时,保证次用户接收信干噪比要求。  相似文献   

16.
We study the optimal precoder design for a MIMO cognitive two-way relay system with underlay spectrum sharing. The system consists of two secondary users (SUs) and one relay station (RS). We jointly optimize the precoders for SUs and RS with perfect and imperfect channel state information (CSI) between SUs/RS and the primary user, where our design approach is based on the alternate optimization method. For the perfect CSI case, we derive the optimal structure of the RS precoding matrix, which generalizes the result for single-antenna SUs and helps to reduce the search complexity. We develop gradient projection (GP) algorithm to calculate the optimal RS precoder numerically. When the RS precoder is given, we propose a fast algorithm based on generalized water-filling theorem to compute the optimal SU precoders. For the imperfect CSI case, we derive equivalent conditions for the interference power constraints and convert the robust SU precoder optimization into the form of semi-definite programming. As for the robust RS precoder optimization, we relax the interference power constraint related with the RS precoder to be convex and then the GP algorithm can be applied. Finally, simulation results demonstrate the effectiveness of the proposed schemes.  相似文献   

17.
Cognitive radio (CR) is applied to solve spectrum scarcity. Although the auction theory and learning algorithm have been discussed in previous works, their combination is not yet researched in the distributed CR networks, where secondary users (SUs) can occupy several channels simultaneously by assuming that one channel can be accessed by at most one SU. A parallel repeated auction scheme is proposed to solve resource allocation in multi-user multi-channel distributed spectrum-overlay CR networks. A novel bid scheme in the light of the first-price sealed auction is designed to balance the system utility and allocation fairness. The proposed auction scheme can be developed based on a learning algorithm and be applied to the scenarios where the cooperation among SUs is unavailable. Under the assumption of limited entry budget, SUs can directly decide whether or not to participate in spectrum auction by comparing the possible bid with access threshold which can be applied into situations that SUs have different transmit power. Theoretical analysis and simulation results show that, compared with original myopic scheme and original genie-aided scheme, the proposed auction scheme can obtain a considerable improvement in efficiency and fairness, especially with adequate available resources.  相似文献   

18.
Robust Cognitive Beamforming With Bounded Channel Uncertainties   总被引:1,自引:0,他引:1  
This paper studies the robust beamforming design for a multi-antenna cognitive radio (CR) network, which transmits to multiple secondary users (SUs) and coexists with a primary network of multiple users. We aim to maximize the minimum of the received signal-to-interference-plus-noise ratios (SINRs) of the SUs, subject to the constraints of the total SU transmit power and the received interference power at the primary users (PUs) by optimizing the beamforming vectors at the SU transmitter based on imperfect channel state information (CSI). To model the uncertainty in CSI, we consider a bounded region for both cases of channel matrices and channel covariance matrices. As such, the optimization is done while satisfying the interference constraints for all possible CSI error realizations. We shall first derive equivalent conditions for the interference constraints and then convert the problems into the form of semi-definite programming (SDP) with the aid of rank relaxation, which leads to iterative algorithms for obtaining the robust optimal beamforming solution. Results demonstrate the achieved robustness and the performance gain over conventional approaches and that the proposed algorithms can obtain the exact robust optimal solution with high probability.   相似文献   

19.
This paper has proposed a proportional-fairness resource allocation algorithm, including both subcarrier assignment algorithm and power allocation algorithm, for uplink orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) systems. First, to get a better performance in the proposed system model, the influence factor (a,b,c) was introduced to realize the assignment of the subcarriers. Second, the transmit power of the secondary users (SUs) was allocated to the corresponding subcarriers in order to maximize the uplink capacity of the SUs subject to both power and interference constraints. With the appropriate influence factor in the subcarrier assignment, the loss of transmitted data rate arising from the fairness was minimized. Simulation results showed that the proposed algorithm can achieve a perfect fairness among the SUs while maximizing the system capacity simultaneously, and is of a low computation complexity.  相似文献   

20.
In this paper, we propose a low‐complexity resource allocation algorithm for the orthogonal frequency division multiplexing cooperative cognitive radio networks, where multiple primary users (PUs) and multiple secondary users (SUs) coexist. Firstly, we introduce a new concept of ‘efficiency capacity’ to represent the channel conditions of SUs by considering both of the interference caused by the PUs and the channel gains of the SUs with the assist of the relays. Secondly, we allocate the relay, subcarrier and transmission power jointly under the constraint of limiting interference caused to the PUs. Simulation results show that the proposed algorithm can achieve a high data rate with a relative low power level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号