首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
介绍了一种应用于大功率激光二极管列阵的新型单片集成微通道制冷热沉.这种热沉已制造并经过测试.10叠层的激光二极管列阵的热阻为0.121℃/W.相邻两个激光条的间距是1.17mm.在20%高占空比条件下,波长为808nm左右,峰值功率可以达到611W.  相似文献   

2.
使用金刚石膜热沉的半导体激光器特性研究   总被引:6,自引:2,他引:4  
比较了使用金刚石膜热沉和传统的钢热沉的半导体激光二极管列阵在热阻和光输出功率方面的特性.与使用Cu热沉的器件相比,采用厚度为350~400μm,热导率在12~14W/(K·cm)的金刚石膜作为热沉的H极管列阵可使热阻降低45~50%,同值电流明显降低,而光输出功率提高25%,稳定性得到改善.表现出金刚石膜热沉在半导体器件散热方面的明显优势.  相似文献   

3.
通过优化设计量子阱结构和列阵结构,减小腔面光功率密度,避免器件腔面灾变损伤,得到1cm AlGaAs/GaAs激光二极管线列阵,在热沉温度21℃,脉冲宽度200μs,重复频率100Hz时,输出峰值功率达157W。  相似文献   

4.
出纤功率30W的激光二极管线列阵光纤耦合器件   总被引:2,自引:0,他引:2  
用一根柱透镜对大功率半导体激光器线列阵输出光束的快轴方向进行准直 ,准直后的光束耦合到光纤列阵中 .大功率半导体激光二极管线列阵的输出功率为 4 0 W,线列阵有 19个发光单元 ,每个发光单元的发光区面积为10 0μm× 1μm .大功率激光二极管线列阵耦合后出纤功率为 30 W,耦合效率为 75 % ,光纤的数值孔径为 0 .11  相似文献   

5.
用一根柱透镜对大功率半导体激光器线列阵输出光束的快轴方向进行准直,准直后的光束耦合到光纤列阵中.大功率半导体激光二极管线列阵的输出功率为40W,线列阵有19个发光单元,每个发光单元的发光区面积为100μm×1μm.大功率激光二极管线列阵耦合后出纤功率为30W,耦合效率为75%,光纤的数值孔径为0.11.  相似文献   

6.
利用一段数值孔径(NA)较小的多模光纤作为一个低成本的微透镜,对激光二极管线列阵的大数值孔径方向准直,将激光二极管线列阵的输出光束耦合到多模光纤列阵中.激光二极管线列阵每个发光单元的光分别耦合到光纤列阵的单根光纤中.总的耦合效率和输出光功率分别为75%和15W.  相似文献   

7.
激光二极管线列阵与多模光纤列阵的光纤耦合   总被引:8,自引:0,他引:8  
利用一段数值孔径(NA)较小的多模光纤作为一个低成本的微透镜,对激光二极管线列阵的大数值孔径方向准直,将激光二极管线列阵的输出光束耦合到多模光纤列阵中.激光二极管线列阵每个发光单元的光分别耦合到光纤列阵的单根光纤中.总的耦合效率和输出光功率分别为75%和15W.  相似文献   

8.
为了满足高功率密度的激光二极管列阵叠层的封装需求,设计了新型小通道高效冷却热沉,并利用Ansys-Fluent软件模拟了它的热特性和冷却水的流动特性。相对于传统的宏通道热沉,小通道热沉的有效散热面积的增加大大提高了其散热效果。同样的散热需求下,小通道热沉所需冷却水水流流速更低,因此也就降低了对水冷机的水压要求。对于不同散热要求的高功率密度激光二极管叠层封装的热沉设计,可根据本文所述的流体热力学模拟方法及其详细的数据分析,对该类小通道热沉进行结构参数优化、热特性仿真及所需冷却水流速的预估。所设计的高效冷却小通道热沉结构具有加工简单,成本低,且方便耐用、寿命长等优点,是高功率密度激光二极管叠层器件封装的有效散热热沉结构。  相似文献   

9.
根据大功率半导体激光二极管列阵与光纤列阵耦合方式, 分别从理论和实验两方面讨论、分析了大功率半导体激光二极管列阵与微球透镜光纤列阵耦合。将19 根芯径均为200 μm 的光纤的端面分别熔融拉锥成具有相同直径的微球透镜, 利用V 形槽精密排列, 排列周期等于激光二极管列阵各发光单元的周期。将微球透镜光纤列阵直接对准半导体激光二极管列阵的19 个发光单元, 精密调节两者之间的距离, 使耦合输出功率达到最大。半导体激光二极管列阵与微球透镜光纤列阵直接耦合后, 不仅从各个方向同时压缩了激光束的发散角, 有效地实现了对激光束的整形、压缩, 而且实现30 W 的高输出功率, 最大耦合效率大于80%, 光纤的数值孔径为0.16。  相似文献   

10.
157W准连续AlGaAs/GaAs激光二极管线列阵   总被引:2,自引:2,他引:0  
通过优化设计量子阱结构和列阵结构,减小腔面光功率密度,避免器件腔面灾变损伤,得到1cmAlGaAs/GaAs激光二极管线列阵,在热沉温度21℃,脉冲宽度200μs,重复频率100Hz时,输出峰值功率达157W.  相似文献   

11.
A monolithic 0.84-cm2 two-dimensional array of surface-emitting folded-cavity InGaAs/AlGaAs diode lasers was mounted junction up on a W/Cu microchannel heatsink and evaluated under continuous-wave (CW) operating conditions. Each laser in the array contained two upward-deflecting internal-cavity 45° mirrors which were etched using chlorine ion-beam-assisted etching, and two top-surface facets. The CW threshold current densities of different sections of the array were ⩽223 A/cm2, while effective CW differential quantum efficiencies were ⩾30%. A CW output power of over 40 W was obtained from the entire array, while a current-limited output power density of 84 W/cm2 with an average temperature rise of ~30°C was obtained from a quarter of the array  相似文献   

12.
A monolithic two-dimensional array of surface-emitting AlGaAs diode lasers with dry-etched vertical facets and parabolic deflecting mirrors was mounted junction-side up on a W/Cu microchannel heatsink and evaluated under continuous-wave (CW) operating conditions. Both the facets and parabolic deflecting mirrors were etched using chlorine ion-beam-assisted etching. Threshold current densities of different sections of the array were consistently around 240 A/cm2, and measured CW differential quantum efficiencies were in the 46-48% range. CW power densities as high as 148 W/cm2 were achieved with an average temperature rise of less than 25°C in this junction-side-up configuration  相似文献   

13.
The temperature of a laser diode array chip must be maintained under a safe level during operation in order to achieve satisfactory performance and lifetime. In this paper, 3-D thermal analysis on diode heatsink is presented. The boundary condition at the bottom of heatsink is constant convective heat transfer coefficient. In addition, heat transfer in thermal-entry region of tubes is accounted for to calculate the convective heat transfer coefficient. Moreover, a 12 mm $times,$ 37 mm $times,$ 7 mm passively cooled laser diode array cooled by a base heatsink is demonstrated. Up to 62 W output power with an electrical-to-optical conversion efficiency of 49.2% are achieved. System thermal resistance of 0.77 K/W is obtained when the flow rate through the base heatsink with 0.8-mm-wide, 2-mm-high and 20-mm-long channels is 25 ${rm cm}^{3} /{rm s}$.   相似文献   

14.
准连续17 kW 808 nm GaAs/AlGaAs叠层激光二极管列阵   总被引:4,自引:5,他引:4  
高功率激光二极管列阵广泛应用于抽运固体激光器.报道了17 kW GaAs/AlGaAs叠层激光二极管列阵的设计、制作过程和测试结果.为了提高器件的输出功率,一方面采用宽波导量子阱外延结构,降低腔面光功率密度,提高单个激光条的输出功率,通过金属有机物化学气相沉积(MOCVD)方法进行材料生长,经过光刻、金属化、镀膜等工艺制备1 cm激光条,填充密度为80%,单个激光条输出功率达100 W以上;另一方面器件采用高密度叠层封装结构,提高器件的总输出功率,实现了160个激光条叠层封装,条间距0.5 mm.经测试,器件输出功率达17kW,峰值波长为807.6 nm,谱线宽度为4.9 nm.  相似文献   

15.
One cm wide monolithic laser diode arrays emitting around 810 nm with a 2 mm total aperture width have been characterised under CW conditions. CW operation up to 16 W has been achieved at a heatsink temperature of 70 degrees C. Several arrays have been lifetested at 10 W CW at a 20 degrees C heatsink temperature for a few thousand hours and have projected lifetimes of between 5000 and 17000 hours. The temperature dependence of the degradation rate was characterised, from which data an activation energy of 0.2 eV was obtained.<>  相似文献   

16.
We demonstrate high-power operation of both individual broad-waveguide separate-confinement-heterostructure quantum-well InGaAsP-InP laser diodes and 1-cm-wide arrays emitting at 1.83 μm. Despite strong dependence of threshold current density and diode efficiency on operating temperature, a continuous-wave output power of 2.1 W has been obtained for 100-μm-aperture lasers with 2-mm-long cavities. An output power of 11.5 W was reached for ten element 1-cm-wide array at a heatsink temperature of 16°C  相似文献   

17.
千瓦级连续激光二极管面阵及微沟道冷却组件   总被引:1,自引:2,他引:1  
千瓦级连续激光二极管面阵由30个40W的808nm连续激光二极管条组成,按要求排列成5×6矩阵,发光孔径12mm×70mm。每个激光二极管条安装在微沟道冷却封装组件上,依靠高压冷却水通过微沟道维持连续运行。面阵的30个二极管条的电路串联,冷却水道并联,恒流电流50A时,发射连续1060W,808nm波长的激光,平均功率密度126W/cm2。5个K型热电偶安装在面阵不同位置测量激光二极管底部附近硅热沉的温度随耗散热功率的增加,面阵整体热阻的测量值为0.009℃/W。千瓦级连续面阵可用于抽运大功率固体激光器,也可用于材料表面热处理。  相似文献   

18.
Fabrication of parallel arrays of silicon IMPATT diodes in which the arrays are formed in a single diode chip is described. The technique includes formation of an integral heatsink for the diode arrays during wafer processing. For a given total active device area, the use of a parallel array of smaller diodes, rather than one large diode, allows a significant reduction in thermal impedance and consequently larger power-dissipation capability. The contribution shown in the letter is the ease and economy with which parallel arrays on an integral heatsink can be fabricated and handled as a single entity. In a diode operated at 6.4 GHz, 3.5 W of c.w. output power has been achieved with a room-temperature copper heatsink and a junction temperature of about 280°C.  相似文献   

19.
He  X. Ung  M. Srinivasan  S. Patel  R. 《Electronics letters》1997,33(14):1221-1222
155 W continuous-wave output power from a 1 cm wide monolithic AlGaAs/InGaAs laser diode array with an emitting aperture of 4800 μm has been demonstrated at a cooling water temperature of 3°C. A continuous-wave output power of 72 W was achieved at room temperature with an emitting aperture of 1600 μm. High T0 was observed for the laser structures  相似文献   

20.
The operation of a two-dimensional GaInAsP/InP diode laser array with CW power dissipation up to 500 W/cm2 into a Si microchannel heat sink is discussed. The approximately 1×4-mm2 laser array was used to characterize the heat sink, and the value of 0.040°C cm2/W was obtained for the thermal resistance per unit area. The extrapolated value for a 1-cm2 heated area is 0.070°C cm2/W  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号