首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A series of Sr3Y(PO4)3:Eu^2+ samples are synthesized by the high temperature solid-state method. Sr3Y(PO4)3:Eu^2+shows an asymmetrical emission band under excitation of 350 nm. The emission peaks at 426 nm and 497 nm are assigned to the nine-coordination Eu^2+ and six-coordination Eu^2+, respectively. The effects of Eu^2+ doping content on the emission intensity and color are observed, and the concentration quenching effect is also observed. For two different Eu^2+ luminescence centers, the quenching mechanisms are dipole-dipole interaction and quadrupole-quadrupole interaction, respectively. And the critical distance of energy transfer is calculated by concentration quenching and turns out to be about 3.67 nm. The results above show that the asymmetrical emission band of Sr3Y(PO4)3:Eu^2+ comes from two different Eu2+ luminescence centers in the lattice.  相似文献   

2.
Ho^3+ with various concentrations and Tm^3+ with molar concentration of 1.28% are co-doped in Li YF4(YLF) single crystals. The luminescent properties of the crystals are investigated through emission spectra, emission cross section and decay curves under the excitation of 808 nm. The energy transfer from Tm^3+ to Ho^3+ and the optimum fluorescence emission of Ho^3+ around 2.05 μm are investigated. The emission intensity at 2.05 μm keeps increasing with the molar concentration of Ho^3+ improved from 0.50% to 1.51% when the molar concentration of Tm^3+ is kept at 1.28%. Moreover, for the co-doped crystals in which the molar concentrations of Tm^3+ and Ho^3+ are 1.28% and 1.51%, respectively, the maximum emission cross section reaches 0.760×10^-20 cm^2 and the maximum fluorescence lifetime is 21.98 ms. All the parameters suggest that these materials have more advantages in the future 2.0 μm laser applications.  相似文献   

3.
Lithium lutetium fluoride (LiLuF4) single crystals doped with different Dy3+ ion concentrations were grown by Bridgman method. The Judd-Ofelt (J-O) strength parameters (Ω2, Ω4, Ω6) of Dy3+ in LiLuF4 crystal are calculated according to the measured absorption spectra and the J-O theory, by which the asymmetry of the Dy3+:LiLuF4 single crystal and the possibility of attaining stimulated emission from 4F9/2 level are analyzed. The capability of the Dy3+:LiLuF4 crystal in generating white light by simultaneous blue and yellow emissions under excitation with ultra- violet light is produced. The effects of excitation wavelength and doping concentration on chromaticity coordinates and photoluminescence intensity are also investigated. Favorable CIE coordinates, x=0.319 3 and y=0.349 3, can be obtained for Dy3+ ion in 2.701% molar doping concentration under excitation of 350 nm.  相似文献   

4.
ZnO nanocrystals doped with trivalent europium ions (Eu3+) and dysprosium ions (Dy3+) were synthesized by the pre- cipitation method. The structural and optical properties of the samples are investigated by the X-ray diffraction (XRD) and photoluminescence (PL). The results show that rare earth ions are incorporated into the lattice of ZnO, and the combination of blue, green and red emissions can be obtained. Specially, the emission can be obtained even under the nonresonant excitation of 320 nm, which is explained based on the energy transfer. The concentration quenching mechanism is also presented in this paper.  相似文献   

5.
A new rare earth complex Tb(p-CIBA)3phen was synthesized and introduced into organic tight emitting devices (OLEDs) as emitting material. The Tb(p-CIBA)3phen was doped into PVK to improve the filmforming and hole-transporting property. Two kinds of devices were fabricated. The device structure is as the following. Single-layer device: ITO/PVK: Tb (p-CIBA) 3 phen /LiF/Al; double-layer device: ITO/PVK: Tb(p-CIBA)3phen/AIQ/LiF/AI. The performances of both devices were investigated carefully. We found that the emission of PVK was completely restrained,and only the green emission was observed from the electroluminescence. The full width at half maximum (FWHM) was less than 10 nm. The highest EL brighthess of the single-layer device is 25.4 cd/cm^2 at a fixed bias of 18 V,and the highest EL brightness of the double-layer device reaches 234.8 cd/cm^2 at a voltage of 20 V.  相似文献   

6.
非刻意掺杂4H-SiC同质外延中的深能级缺陷   总被引:1,自引:0,他引:1  
Unintentionally doped 4H-SiC homoepitaxial layers grown by hot-wall chemical vapor deposition (HWCVD) have been studied using photoluminescence (PL) technique in the temperature range of 10 to 240 K. A broadband green luminescence has been observed. Vacancies of carbon (Vc) are revealed by electron spin resonance (ESR) technique at 110 K. The results strongly suggest that the green band luminescence, as shallow donor-deep accepter emission, is attributed to the vacancies of C and the extended defects. The broadband green luminescence spectrum can be fitted by the two Gauss-type spectra using nonlinear optimization technique. It shows that the broad-band green luminescence originates from the combination of two independent radiative transitions. The centers of two energy levels are located 2.378 and 2.130 eV below the conduction band, respectively, and the ends of two energy levels are expanded and superimposed each other.  相似文献   

7.
ZnS微米晶须的制备和光致发光性质研究   总被引:1,自引:1,他引:0  
ZnS whiskers were successfully synthesized by the chemical vapor deposition method with the assistance of CuS micro-spheres. The composition, morphology and structure of the samples were characterized by X-ray diffraction, X-ray energy dispersive spectroscopy, scanning electron microscopy, and the temperature-dependent photoluminescence (PL) spectrum over a temperature range from 10 to 250 K was studied. The results show that the as-synthesized ZnS whiskers have an average length of 0.3 mm and diameter of 2.5 μm with a cubic zinc-blende structure. There exist three emission bands in the blue, green and yellow regions, and the emission mechanism is discussed. As the temperature increases, the temperature-dependent PL spectrum shows anomalous behavior, where distinct inverted V-shaped characters of blue and green emission integrated intensity and an inconspicuous S-shape of blue emission peak energy are observed. The transition mechanism is discussed.  相似文献   

8.
The Er^3+/Ce^3+ co-doped tellurite-based glasses (TeO2-Bi2O3-TiO2) modified with various WO3 contents are prepared using conventional melt-quenching technique. The X-ray diffraction (XRD) patterns and Raman spectra of glass sam- ples are measured to investigate the structures. The absorption spectra, the up-conversion emission spectra, the 1.53 /am band fluorescence spectra and the lifetime of Er3+:4113/2 level are measured, and the amplification quality factors of Er3+ are calculated to evaluate the effect of WO3 contents on the 1.53 μm band spectroscopic properties. With the in- troduction of WO3, it is found that the prepared tellurite-based glasses maintain the amorphous structure, while the 1.53 μm band fluorescence intensity of Er3+ is improved evidently, and the fluorescence full width at half maximum (FWHM) is broadened accordingly. In addition, the prepared tellurite-based glass samples have larger bandwidth qual- ity factor than silicate and germanate glasses. The results indicate that the prepared Er3+/Ce3+ co-doped tellurite-based glass with a certain amount of WO3 is an excellent gain medium applied for the 1.53 μm band Er3+-doped fiber ampli- fier (EDFA).  相似文献   

9.
In order to obtain higher emission performance than that of a traditional M-type cathode, we have developed a new type impregnated dispenser cathode. The new cathode is impregnated with a new active substance with molar ratio of 26BaO·29SrO·8Sc2O3 ·7CaO·Al2O3 . This paper introduces the emission performance, surface active material, and work function of the new cathode. At 1100℃B , the DC current density and pulse current density are 30.6±1.0 A/cm2 and 171.6±2.8 A/cm2 , respectively, 2.1 and 5.4 times of that of an M-type cathode. The work function of the new cathode is 1.668± 0.002 eV. High concentration O-Al-Sc-Sr-Ba and O-Al-Sc-Ba are found in the pores and at pore edges, respectively. By comparing the emission performances and surface characteristics of as-polished and as-cleaned cathodes, it is proposed that, the emission around pore ends forms the major part of the total emission for the new cathodes.  相似文献   

10.
The tetrapod ZnO nanostructures are synthesized on the Si (100) substrates using the chemical va- por deposition (CVD) method at 1000 ℃. Each nanostructure has four arms which are about 3-10 μm in length and 0.2-1.5 μm in diameter. Further analyses on structure demonstrate that the tetrapod ZnO nanostructures have single crystalline wurtzite hexagonal structure preferentially oriented in c-axis. The photoluminescence (PL) mea- surements of the tetrapod ZnO nanostructures revealed a UV peak at 382 nm corresponding to the free exciton emission, and a green peak at 523 nm arising from deep level emission. For comparative analysis, cathodolumines- cence (CL) spectra obtained from different regions of an individual tetrapod are investigated. Moreover, a possible growth mechanism of the tetrapod ZnO nanostructures is also discussed based on the experimental results.  相似文献   

11.
荧光粉BaY2Si3O10: Bi3+, Eu3+经高温固相法制备并由X-ray衍射谱仪分析其物相结构。实验结果显示Bi3+共掺下BaY2Si3O10: Eu3+的激发光谱呈现一个有明显增强的宽电荷转移带和系列Eu3+的 f – f 窄吸收峰,发射谱为Eu3+的5D0-7FJ橙-红光发射。当用285 nm 紫外光激发时,Bi3+到Eu3+间存在有效的能量传递,导致Bi3+的宽带紫外发射(中心345 nm)强度减弱,而Eu3+的橙-红光发射显著增强;随着Eu3+浓度的增加,能量传递效率也随之提高。最佳Eu3+浓度为0.4摩尔百分比,此后荧光粉发射强度发生浓度猝灭。结果表明Bi3+共掺时明显改善和提升荧光粉在电荷转移带(200 – 350 nm)的激发效率。Bi3+到Eu3+间主要的能量传递机制是通过四极–四极相互作用实现,并且能量传递的临界作用距离是1.604 nm  相似文献   

12.
LiCaPO4:Eu3+材料制备白光LED及其发光特性   总被引:7,自引:7,他引:0  
采用高温固相法制备了LiCaPO4:Eu3+红色发光材料,研究了Eu3+掺杂浓度、R+或Cl-等对材料发光性质的影响.结果显示,在399 nm近紫外光激发下,材料呈多峰发射,分别由Eu3+的5DO→7FJ(J=0,1,2,3,4)能级跃迁产生,主峰为612 nm;监测612 nm发射峰,所得激发光谱由O2-→Eu3+电...  相似文献   

13.
采用传统的高温固相法成功合成了Sr3-xGa2O5Cl2:Sm3+系列橙红色荧光粉。使用X射线衍射仪(XRD)测试了样品的晶体结构,样品的形貌和颗粒尺寸由扫描电子显微镜(SEM)表征,使用荧光光谱仪测试了样品的光致发光光谱和衰减寿命。Sr3Ga2O5Cl2晶相为单斜结构,掺杂的Sm3+离子取代Sr2+的格位成为荧光粉的发光中心。样品的激发光谱由O2-→Sm3+的电荷迁移带和Sm3+离子4f内层电子的特征激发峰组成,位于230 nm、404 nm的激发峰较强。发射光谱的峰值位于565、601、650 nm处,分别对应于Sm3+的4G5/2→6H5/2、4G5/2→6H7/2、4G5/2→6H9/2特征跃迁。样品的发光强度随着Sm3+浓度的增加先增大后减小,最佳掺杂浓度为3.0% mol。根据实验数据对浓度淬灭的原因进行了探讨,浓度淬灭机理为电偶极-电偶极相互作用。  相似文献   

14.
SrZn2(PO4)2:Sm3+ phosphor was synthesized by a high temperature solid-state reaction in atmosphere. SrZn2(PO4)2:Sm3+ phosphor is efficiently excited by ultraviolet (UV) and blue light, and the emission peaks are assigned to the transitions of 4G5/2-6H5/2 (563 nm), 4G5/2-6H7/2 (597 nm and 605 nm) and 4G5/2-6H9/2 (644 nm and 653 nm). The emission intensities of SrZn2(PO4)2:Sm3+ are influenced by Sm3+ concentration, and the concentration quenching effect of SrZn2(PO4)2:Sm3+ is also observed. When doping A+ (A=Li, Na and K) ions, the emission intensity of SrZn2(PO4)2:Sm3+ can be obviously enhanced. The Commission Internationale de l'Eclairage (CIE) color coordinates of SrZn2(PO4)2:Sm3+ locate in the orange-red region. The results indicate that the phosphor has a potential application in white light emitting diodes (LEDs).  相似文献   

15.
采用溶胶-凝胶法合成了Ca10(Si2O7)3Cl2∶Eu3+荧光粉,并研究了该荧光粉的微观结构及发光性能。结果显示:Eu3+掺杂Ca10(Si2O7)3Cl2荧光粉属于单斜晶系,颗粒呈现近球体和长方体形状,粒径介于400~500 nm。在395 nm近紫外光激发下,该荧光粉呈红色发射,并有5个分别位于582, 594, 615, 654和705 nm的主发射峰,分别对应于Eu3+的5D0→7F0、7F1、7F2、7F3和7F4特征跃迁。该荧光粉的激发光谱覆盖了320~480 nm这段波长范围,主激发峰位于395 nm。另外,该荧光粉的发光强度随Eu3+掺杂量的提高而增强。  相似文献   

16.
在还原气氛下利用高温固相反应法制备了Eu3 ,Li 共掺杂的ZnO:Zn 荧光粉.在近紫外光激发基质条件下,该荧光粉材料具有强的来自Eu3 的4f组态内跃迁线状发射及来自基质缺陷相关的绿色可见宽带发射.测量了稳态光谱,漫反射及时间分辨光谱以研究该材料的发光性质及基质向稀土离子的能量传递过程.在还原气氛下因在导带下形成了一系列浅施主能级,暂时储存激发能,施主中心浓度增加使得基质向稀土离子的能量传递效率增强.通过与纯Eu2O3粉末的光谱对比分析,确定了在此材料体系中存在处于两种局域环境的Eu3 .由于在近紫外区的强且有效的吸收,此材料有望成为应用于近紫外激发发光二极管的新型荧光粉.  相似文献   

17.
纳米粉体Y2O3:Ti 3+ , Eu3+的光谱性能   总被引:1,自引:1,他引:0  
采用共沉淀法在氮氢气氛中制备出Y2O 3:Ti 3+, Eu 3+纳米粉体,测量了它的XRD、激发与发射光谱,观测了形貌。通过与Y2O 3:Ti 3+纳米粉体的光谱比较分析,发现Y2O 3中的Ti 3+至Eu3+存在能量传递,以致紫外至蓝光区域的光,均能使Eu3+经5D0→7F2等跃迁通道发射出610nm左右的荧光,于是增强了粉体在红橙光区发光的比重,因此可以调节粉体的发光性能。Y2O 3:Ti 3+纳米粉体的吸收带从紫外延伸到蓝光区,强荧光带覆盖了整个可见光区,这预示它有望成为新一代白光LED或汞灯的光转换荧光粉。  相似文献   

18.
采用高温固相法合成了Ca3(PO4)2:RE3+(RE = Eu, Dy, Ce, Tb)系列发光材料,研究了其发光性质。研究表明Ca3(PO4)2: RE3+ 在紫外区域均能有效被激发,有很强的荧光发射,且发光范围覆盖蓝到红光波段,是一类可以紫外激发实现白光LED用的潜在荧光粉。在0.005到0.03 mol 浓度范围内,Eu,Dy和Ce掺杂的荧光粉的发光都发生了浓度淬灭,分别对应于0.025,0.025和0.02 mol,而Tb3+掺杂的样品的表现出高的发光淬灭浓度。  相似文献   

19.
Near-infrared (NIR) light-emitting diodes (LEDs) light sources are desirable in photonic, optoelectronic, and biological applications. However, developing broadband red and NIR-emitting phosphors with good thermal stability is always a challenge. Herein, the synthesis of Eu2+-activated SrY2O4 red phosphor with high photoluminescence quantum efficiency and broad emission band ranging from 540 to 770 nm and peaking at 620 nm under 450 nm excitation is designed. Sr/Ba substitution in SrY2O4:Eu2+ has been further utilized to achieve tunable emission by modifying the local environment, which facilitates the giant red-shifted emission from 620 to 773 nm while maintaining the outstanding thermal stability of SrY2O4:Eu2+. The NIR emission is attributed to the enhanced Stokes shift and crystal field strength originated from the local structural distortions of [Y1/Eu1O6] and [Y2/Eu2O6]. The investigation in charge distribution around Y/Eu provides additional insight into increasing covalency to tune the emission toward the NIR region. As-fabricated NIR phosphor-converted LEDs demonstration shows its potential in night-vision technologies. This study reveals the NIR luminescence mechanism of Eu2+ in oxide-based hosts and provides a design principle for exploiting Eu2+-doped NIR phosphors with good thermal stability.  相似文献   

20.
采用固相反应法制备了Bi 3+ 、Eu3+ 、Tb3+ 掺杂的Lu3TaO7。测量了样品的X射线衍射谱、激发和发射光谱及荧光衰减曲线。三种离子掺杂的Lu3TaO7均呈现出强的荧光发射,其中Bi3+具有峰位在431 nm处的一强发射宽带,衰减寿命为16.8 μs,Eu 3+ 、Tb 3+ 则表现出稀土离子的特征锐发射峰,衰减寿命分别为1.26 ms和1.20 ms。因此,它们均是具有潜在应用前景的重闪烁体材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号