首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new on-chip transient detection circuit for system-level electrostatic discharge (ESD) protection is proposed. The circuit performance to detect different positive and negative fast electrical transients has been investigated by the HSPICE simulator and verified in a silicon chip. The experimental results in a 0.13-m CMOS integrated circuit (IC) have confirmed that the proposed on-chip transient detection circuit can be used to detect fast electrical transients during the system-level ESD events. The proposed transient detection circuit can be further combined with the power-on reset circuit to improve the immunity of the CMOS IC products against system-level ESD stress.  相似文献   

2.
Four power-rail electrostatic-discharge (ESD) clamp circuits with different ESD-transient detection circuits have been fabricated in a 0.18-$muhbox{m}$ CMOS process to investigate their susceptibility against electrical fast-transient (EFT) tests. Under EFT tests, where the integrated circuits in a microelectronic system have been powered up, the feedback loop used in the power-rail ESD clamp circuits may lock the ESD-clamping NMOS in a “latch-on” state. Such a latch-on ESD-clamping NMOS will conduct a huge current between the power lines to perform a latchuplike failure after EFT tests. A modified power-rail ESD clamp circuit has been proposed to solve this latchuplike failure and to provide a high-enough chip-level ESD robustness.   相似文献   

3.
《Microelectronics Reliability》2015,55(11):2236-2246
Electrostatic discharge (ESD) protection design and characterization with consideration of harmful electromagnetic compatibility (EMC) events for automotive interface networks are presented. The EMC events discussed in this paper include: electrostatic discharge (ESD), electrical fast transient (EFT), surge and automotive environment transients. Key electrical parameters defined in those standards are extracted and compared. To provide efficient protection against these EMC requirements, two major automotive process technologies namely, full-dielectric isolation or silicon on insulator (SOI) and junction isolation (JI), are compared with respect to the leakage current, latch-up immunity, design complexity, EMC handling capability and cost. Protection solutions for EMC-compliance issues are reviewed at both the off-chip and on-chip levels. Trade-offs among several off- and on-chip protection devices with varying degrees of area efficiency and robustness are analyzed.  相似文献   

4.
A hardware/firmware co-design solution in an 8-bits microcontroller has been proposed to practically fix the system-level electrostatic discharge (ESD) issue on the keyboard products. By including the especial ESD sensors and an additional ESD flag into the chip, the fast electrical transient due to the system-level ESD zapping on the keyboard can be detected. The firmware stored in the ROM of the 8-bits microcontroller is designed to automatically check the ESD flag to monitor the abnormal conditions in system operations. If the keyboard is upset or locked up by a system-level ESD transient, the microcontroller can be quickly recovered to a known and stable state. The 8-bits microcontroller with such a hardware/firmware co-design solution has been fabricated in a 0.45-μm CMOS process. The system-level ESD susceptibility of the keyboard with this 8-bits microcontroller has been improved from the original ±2 kV (±4 kV) to become greater than ±8 kV (±15 kV) in the contact-discharge (air-discharge) ESD zapping.  相似文献   

5.
Tests against electrical fast transient/burst (EFT) represent a serious threat for modern high-speed electronics: besides the conducted injection of high amplitude pulse, a strong radiated field is produced during this test. The prediction of the effects of this test during the equipment early design stage requires the equivalent circuit of the generator: the output waveform into a resistive 50-Ω load is not sufficient to recover the complete circuit, including inductive component and parasitic elements. These are essential to predict the disturbance produced in arbitrary loads, as the equipment under test can be viewed. This paper describes how to characterize the EFT generator by means of the measurement of the output voltage and current produced in presence of known loads; moreover, a procedure to calculate the current on the equipment power cord is shown, based on the use of a circuit simulator (PSPICE). Finally, the disturbance produced on different loads and the radiated field during the test are calculated and experimentally validated  相似文献   

6.
分析了传感器可能受到的电磁干扰类型,在结构和电路上,分别针对抑制静电、脉冲群和浪涌干扰的不同特点,提出了涂敷导电酯或加入导电弹性衬垫、安装铁氧体磁环、并联x电容、采用瞬变干扰吸收器件进行钳位吸收等措施。测试结果表明:各种干扰基本被控制,符合设计要求。  相似文献   

7.
On-chip power-rail electrostatic discharge (ESD) protection circuit designed with active ESD detection function is the key role to significantly improve ESD robustness of CMOS integrated circuits (ICs). Four power-rail ESD clamp circuits with different ESD-transient detection circuits were fabricated in a 0.18-$mu{hbox{m}}$ CMOS process and tested to compare their system-level ESD susceptibility, which are named as power-rail ESD clamp circuits with typical RC-based detection, PMOS feedback, NMOS+PMOS feedback, and cascaded PMOS feedback in this work. During the system-level ESD test, where the ICs in a system have been powered up, the feedback loop used in the power-rail ESD clamp circuits provides the lock function to keep the ESD-clamping NMOS in a “latch-on” state. The latch-on ESD-clamping NMOS, which is often drawn with a larger device dimension to sustain high ESD level, conducts a huge current between the power lines to perform a latchup-like failure after the system-level ESD test. A modified power-rail ESD clamp circuit is proposed to solve this problem. The proposed power-rail ESD clamp circuit can provide high enough chip-level ESD robustness, and without suffering the latchup-like failure during the system-level ESD test.   相似文献   

8.
As CMOS technology scales down, the design of ESD protection circuits becomes more challenging. There are some disadvantages for the actual power clamp circuit. In this paper, an optimization ESD power clamp circuit is proposed. The new clamp circuit adopts the edge triggering True Single Phase Clocked Logic (TSPCL) D flip-flop to turn on and time delay, it has the advantage of dynamic transmission structure. By adding a leakage transistor of small size, the clamp circuit can turn off effectively. By changing the W/L ratio, the clamp can safely protect the gate of ESD power clamp devices from thermoelectric breakdown. The results show that the circuit can reduce the false triggering and power supply noise more effectively, it can be widely used in high-speed integrated circuits. The proposed structure has the advantages of low power and low cost, and can be used to the system-level ESD protection.  相似文献   

9.
In this paper, a new structure for an advanced high holding voltage silicon controlled rectifier (AHHVSCR) is proposed. The proposed new structure specifically for an AHHVSCR‐based electrostatic discharge (ESD) protection circuit can protect integrated circuits from ESD stress. The new structure involves the insertion of a PMOS into an AHHVSCR so as to prevent a state of latch‐up from occurring due to a low holding voltage. We use a TACD simulation to conduct a comparative analysis of three types of circuit — (i) an AHHVSCR‐based ESD protection circuit having the proposed new structure (that is, a PMOS inserted into the AHHVSCR), (ii) a standard AHHVSCR‐based ESD protection circuit, and (iii) a standard HHVSCR‐based ESD protection circuit. A circuit having the proposed new structure is fabricated using 0.18 μm Bipolar‐CMOS–DMOS technology. The fabricated circuit is also evaluated using Transmission‐Line Pulse measurements to confirm its electrical characteristics, and human‐body model and machine model tests are used to confirm its robustness. The fabricated circuit has a holding voltage of 18.78 V and a second breakdown current of more than 8 A.  相似文献   

10.
The RC-based power-rail electrostatic-discharge (ESD) clamp circuit with big field-effect transistor (BigFET) layout style in the main ESD clamp n-channel metal–oxide–semiconductor (NMOS) transistor was widely used to enhance the ESD robustness of a CMOS IC fabricated in advanced CMOS processes. To further reduce the occupied layout area of the RC in the power-rail ESD clamp circuit, a new ESD-transient detection circuit realized with smaller capacitance has been proposed and verified in a 0.13- $muhbox{m}$ CMOS process. From the experimental results, the power-rail ESD clamp circuit with the new proposed ESD-transient detection circuit can achieve a long-enough turn-on duration and higher ESD robustness under ESD stress condition, as well as better immunity against mistrigger and latch-on event under the fast-power-on condition.   相似文献   

11.
A novel electrostatic discharge (ESD) protection circuit, which combines complementary low-voltage-triggered lateral SCR (LVTSCR) devices and the gate-coupling technique, is proposed to effectively protect the thinner gate oxide of deep submicron CMOS ICs without adding an extra ESD-implant mask. Gate-coupling technique is used to couple the ESD-transient voltage to the gates of the PMOS-triggered/NMOS-triggered lateral silicon controlled rectifier (SCR) (PTLSCR/NTLSCR) devices to turn on the lateral SCR devices during an ESD stress. The trigger voltage of gate-coupled lateral SCR devices can be significantly reduced by the coupling capacitor. Thus, the thinner gate oxide of the input buffers in deep-submicron low-voltage CMOS ICs can be fully protected against ESD damage. Experimental results have verified that this proposed ESD protection circuit with a trigger voltage about 7 V can provide 4.8 (3.3) times human-body-model (HBM) [machine-model (MM)] ESD failure levels while occupying 47% of layout area, as compared with a conventional CMOS ESD protection circuit  相似文献   

12.
A new electrostatic discharge (ESD) protection circuit, using the stacked-nMOS triggered silicon controlled rectifier (SNTSCR) as the ESD clamp device, is designed to protect the mixed-voltage I/O buffers of CMOS ICs. The new proposed ESD protection circuit, which combines the stacked-nMOS structure with the gate-coupling circuit technique into the SCR device, is fully compatible to general CMOS processes without causing the gate-oxide reliability problem. Without using the thick gate oxide, the experimental results in a 0.35 /spl mu/m CMOS process have proven that the human-body-model ESD level of the mixed-voltage I/O buffer can be successfully increased from the original /spl sim/2 kV to >8 kV by using this proposed ESD protection circuit.  相似文献   

13.
A new design on the electrostatic discharge (ESD) protection scheme for CMOS IC operating in power-down-mode condition is proposed. By adding a VDD_ESD bus line and diodes, the new proposed ESD protection scheme can block the leakage current from I/O pin to VDD power line to avoid malfunction during power-down-mode operating condition. During normal circuit operating condition, the new proposed ESD protection schemes have no leakage path to interfere with the normal circuit functions. The whole-chip ESD protection design can be achieved by insertion of ESD clamp circuits between VSS power line and both VDD power line and VDD ESD bus line. Experimental results have verified that the human-body-model (HBM) ESD level of this new scheme can be greater than 7.5 kV in a 0.35-μm silicided CMOS process. Furthermore, output-swing improvement circuit is proposed to achieve the full swing of output voltage level during normal circuit operating condition.  相似文献   

14.
袁博鲁  万天才 《微电子学》2012,42(2):206-209
介绍了一种带ESD瞬态检测的VDD-VSS之间的电压箝位结构,归纳了在设计全芯片ESD保护结构时需要注意的关键点;提出了一种亚微米集成电路全芯片ESD保护的设计方案,从实例中验证了亚微米集成电路的全芯片ESD保护设计.  相似文献   

15.
A new electrostatic discharge (ESD) protection design, by using the substrate-triggered stacked-nMOS device, is proposed to protect the mixed-voltage I/O circuits of CMOS ICs. The substrate-triggered technique is applied to lower the trigger voltage of the stacked-nMOS device to ensure effective ESD protection for the mixed-voltage I/O circuits. The proposed ESD protection circuit with the substrate-triggered technique is fully compatible to general CMOS process without causing the gate-oxide reliability problem. Without using the thick gate oxide, the new proposed design has been fabricated and verified for 2.5/3.3-V tolerant mixed-voltage I/O circuit in a 0.25-/spl mu/m salicided CMOS process. The experimental results have confirmed that the human-body-model ESD level of the mixed-voltage I/O buffers can be successfully improved from the original 3.4 to 5.6 kV by using this new proposed ESD protection circuit.  相似文献   

16.
A new CMOS on-chip electrostatic discharge (ESD) protection circuit which consists of dual parasitic SCR structures is proposed and investigated. Experimental results show that with a small layout area of 8800 μ2, the protection circuit can successfully perform negative and positive ESD protection with failure thresholds greater than ±1 and ±10 kV in machine-mode (MM) and human-body-mode (HBM) testing, respectively. The low ESD trigger voltages in both SCRs can be readily achieved through proper circuit design and without involving device or junction breakdown. The input capacitance of the proposed protection circuit is very low and no diffusion resistor between I/O pad and internal circuits is required, so it is suitable for high-speed applications. Moreover, this ESD protection circuit is fully process compatible with CMOS technologies  相似文献   

17.
A new power-rail electrostatic discharge (ESD) clamp circuit for application in 3.3-V mixed-voltage input–output (I/O) interface is proposed and verified in a 130-nm 1-V/2.5-V CMOS process. The devices in this power-rail ESD clamp circuit are all 1-V or 2.5-V low-voltage nMOS/pMOS devices, which are specially designed without suffering the gate-oxide reliability issue under 3.3-V I/O interface applications. A special ESD detection circuit realized with the low-voltage devices is designed and added in the power-rail ESD clamp circuit to improve ESD robustness of ESD clamp devices by substrate-triggered technique. The experimental results verified in a 130-nm CMOS process have proven the excellent effectiveness of this new proposed power-rail ESD clamp circuit.  相似文献   

18.
A compact add-on model is proposed to simulate the mechanism of charge trapping and release (detrapping) and its effect on the threshold voltage of MOSFET devices. The model uses implicit algebraic differential equations compatible with transient analysis in SPICE. It also shares the accuracy level of the transient analysis. A micro-model approach is used, and each trap is treated by a two-state Markov process. The normalization of trap behavior can be enabled or disabled, so that the designer can compare average trap behavior to the result of repeated Monte-Carlo simulations of a circuit. In this manner, the model can compromise between device-level modeling and circuit-level modeling. Unlike models geared towards digital circuit design, the trapping and release rates need not be constant during electrical stress. The trapping and release rates are a function of time, as they depend on the circuit state-space equations. An operational amplifier is analyzed using the new model, and the proposed approach is compared with the state of the art.  相似文献   

19.
This paper presents a new electrostatic discharge (ESD) protection design for input/output (I/O) cells with embedded silicon-controlled rectifier (SCR) structure as power-rail ESD clamp device in a 130-nm CMOS process. Two new embedded SCR structures without latchup danger are proposed to be placed between the input (or output) pMOS and nMOS devices of the I/O cells. Furthermore, the turn-on efficiency of embedded SCR can be significantly increased by substrate-triggered technique. Experimental results have verified that the human-body-model (HBM) ESD level of this new proposed I/O cells can be greater than 5 kV in a 130-nm fully salicided CMOS process. By including the efficient power-rail ESD clamp device into each I/O cell, whole-chip ESD protection scheme can be successfully achieved within a small silicon area of the I/O cell.  相似文献   

20.
Electrostatic discharge (ESD) continues to be a semiconductor quality and reliability area of interest as semiconductor components are reduced to smaller dimensions. The combination of scaling, design integration, circuit performance objectives, new applications, and the evolving system environments, ESD robustness will continue to be a technology concern. With the transition from silicon bipolar junction transistor to modern BiCMOS silicon germanium (SiGe) semiconductor technologies, new semiconductor process and integration issues have evolved which influence both device performance and ESD protection. Additionally, the issues of low cost, low power and radio frequency (RF) GHz performance objectives has lead to both revolutionary as well as derivative technologies; these have opened new doors for discovery, development and research in the area of on-chip ESD protection and design. With the growth of interest of ESD in RF technology, new innovations and inventions are occurring at a rapid pace. In this paper, we will provide an introductory review of silicon germanium technology and ESD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号