首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为研究城际铁路纵向承台式无砟轨道扣件系统关键参数取值,基于车辆-轨道耦合动力学理论,建立客车-无砟轨道-桥梁耦合动力学模型,分析扣件刚度、扣件间距对桥上无砟轨道系统动力响应的影响规律,并基于层次分析法,对桥上无砟轨道系统动力特性进行综合评价。结果表明:随着扣件系统刚度增大,钢轨垂向位移减小,车体振动加速度、轮轨垂向力、轮重减载率和桥梁振动加速度均增大;随着扣件间距的增大,轮轨垂向力减小,车体振动加速度、轮重减载率、钢轨垂向位移和桥梁振动加速度均增大;综合考虑轨道变形以及工程造价,建议扣件系统刚度为50~80 kN/mm,扣件间距为0.6~0.7 m。  相似文献   

2.
研究目的:为研究市域快线减振垫浮置板轨道过渡段的合理设置,根据车辆-轨道耦合动力学原理,建立车辆-过渡段无砟轨道垂向耦合动力学计算模型,计算CRH6型动车以160 km/h的速度经过双块式无砟轨道-橡胶减振垫浮置板轨道过渡段时所引起的轮轨系统动力响应,并选取钢轨挠度变化率作为评价指标来衡量过渡段设置的合理性,详细分析不...  相似文献   

3.
重载铁路桥上无砟轨道动力学选型研究   总被引:1,自引:1,他引:0  
为给孟加拉帕德玛大桥铁路连接线桥上无砟轨道结构选型提供依据,基于车辆-轨道耦合动力学理论,建立重载货车-无砟轨道-桥梁耦合动力学模型,分析不同轴重货车通过桥上不同类型无砟轨道时的动力响应。结果表明:随着列车轴重的增大,桥上无砟轨道部件的动力响应明显增大;从降低轨道结构位移的角度考虑,优先选取现浇板式无砟轨道和单层长枕埋入式无砟轨道等单层无砟轨道结构;从降低轨道与桥梁的接触应力及桥梁振动加速度的角度考虑,应优先选取单元板式无砟轨道和长枕埋入式无砟轨道等双层无砟轨道结构。重载铁路桥上无砟轨道选型应综合考虑桥上无砟轨道的动力特性、线路特点及其与相关专业的接口等因素综合确定,相关成果可为重载铁路桥上无砟轨道选型提供参考。  相似文献   

4.
双块式无砟轨道合理刚度取值研究   总被引:1,自引:0,他引:1  
为确定双块式无砟轨道的合理刚度,提出将准静态与动力响应分析手段相结合,根据应力、变形及振动水平控制指标,综合比选合理范围内的多种轨道刚度方案来确定双块式无砟轨道合理刚度的方法.分别运用有限单元法和车辆-轨道耦合动力理论建立双块式无砟轨道准静态计算模型进行应力与变形分析,开展无砟轨道扣件刚度对轮轨系统动力响应的影响分析.结果表明:对于250 km/h和350 km/h客运专线双块式无砟轨道,扣件刚度宜分别在35~45 kN/mm和20~25 kN/mm范围内取值.  相似文献   

5.
在高速铁路运营过程中,局部双块式无砟轨道道床板和支承层间发生了开裂,并在接触面上因温度变化而产生一定程度的离缝,这会引起道床板的空吊,形成动态不平顺,给行车的舒适性和安全性带来隐患。本文基于 ABAQUS有限元理论,建立了车辆-双块式无砟轨道耦合动力学模型,对比了车辆时速350 km时离缝存在与否两种情况下的车体及轨道结构的振动特性,从车辆运行的安全性以及轮轨系统的动力作用水平等方面来评价分析双块式无砟轨道上拱离缝的影响。研究结果表明:双块式无砟轨道上拱离缝后对行车车辆安全性指标及轨道结构的受力影响较大,需要及时养护维修。  相似文献   

6.
根据桥上CRTSⅡ型轨道结构形式,考虑高速列车与无砟轨道、桥梁之间的相互作用,建立基于新型车辆单元和无砟轨道-桥梁单元的车辆-无砟轨道-桥梁纵垂向耦合振动模型。运用有限元方法和Lagrange方程,分别推导车辆单元、无砟轨道-桥梁单元的刚度、质量和阻尼矩阵,建立有限元数值方程。考虑轨道平顺和轨道不平顺两种工况,求解有限元数值方程,分析梁端和跨中动力特性。计算结果表明,该模型及程序能够反映轨道结构的竖向振动响应。施加轨道不平顺,轮轨作用力增大了50%左右,梁端处钢轨的竖向加速度增加了6.5倍左右,跨中处从10 m/s~2增加到30 m/s~2。每种工况下,梁端和跨中处轨道结构的竖向位移、竖向加速度分别逐渐减小,梁端处轨道结构的振动及其位移变化都比跨中处大。  相似文献   

7.
SK?2型双块式混凝土轨枕是高速铁路无砟轨道结构中的重要预制件,单一生产厂日均产量达到800~1400根,但目前的人工检测方式无法满足双块式轨枕的出厂检验要求。本文提出的双块式轨枕外形质量快速检测系统可满足TB/T 3397—2015《CRTS双块式无砟轨道混凝土轨枕》的出厂检验要求,与双块式轨枕生产线相匹配,大大提高了检测效率,实现了双块式轨枕全参数、自动化、智能化检测。检测数据自动上传至生产管理平台,可对双块式轨枕生产质量进行跟踪管理。  相似文献   

8.
研究目的:CRTS Ⅱ型双块式无砟轨道是在引进德国技术的基础上,进行改进而国产化的一种双块式无砟轨道,它采用大型机械振捣后压人轨枕施工.对于这种类型的无砟轨道存在许多不同观点,本文从一些关键技术出发对其进行了一些分析和探讨.研究结论:CRTS Ⅱ型双块式无砟轨道在铺设精度方面可以满足高速铁路的要求,在控制裂缝方面可以通过混凝土材料、设计和施工等多个方面对其进行优化和完善.此外,对于双块式轨枕和桥上底座配筋等方案进行适当的优化也是非常必要而有利的.  相似文献   

9.
在运营的无砟轨道线路上调查发现,CRTSⅠ型双块式无砟轨道在预制轨枕与现浇道床板接触面间出现裂缝和道床板面混凝土掉块.本文分析了 CRTSⅠ型双块式无砟轨道轨枕松动的原因,通过现场测试对比分析了松动轨枕在修复前后钢轨、轨枕、道床板的垂向位移及加速度的变化情况.研究结果表明,松动轨枕修复后,钢轨、轨枕的垂向位移及加速度均明显减小,轨枕纵横向翻转幅度也明显减小,修复前后道床板的加速度变化较小.及时修复轨枕块松动应作为该类型无砟轨道日常养护维修工作的主要内容之一.  相似文献   

10.
为研究制动荷载作用下桥上无砟轨道动力响应问题,建立车辆子系统模型和无砟轨道-桥梁子系统模型。根据高速列车制动减速度特性曲线确定列车制动力,利用Hertz理论求解轮轨力,通过交叉迭代法求解有限元数值方程。以4节编组的CRH2型动车组在桥上无砟轨道制动为例,进行系统动力响应分析。研究结果表明:轨道、桥梁结构的纵竖向位移和加速度均逐层递减,梁端处轨道结构的竖向振动比跨中处大;列车制动过程中列车速度逐渐减小引起轨道结构的竖向动力响应也减小;列车停车后,轨道结构和桥梁的纵向位移反向突变、纵向加速度突变,随后都有自由衰减的趋势;列车停车瞬间,列车和桥梁出现纵向最大振动。研究成果可为桥上无砟轨道的设计提供理论支持。  相似文献   

11.
高速铁路高架车站和大跨度桥梁等地段铺设无砟轨道的技术尚不成熟,仍然需要采用有砟轨道结构。我国目前对高速铁路桥上有砟轨道结构研究较少。文章利用多体动力学软件ADAMS/Rail及大型有限元软件ANSYS建立的三维动力模型,研究了Ⅲ型轨枕、宽轨枕、梯子式轨枕3种不同轨枕形式高速铁路桥上有砟轨道的车辆-轨道-桥梁系统动力学性...  相似文献   

12.
为进一步优化双块式无砟轨道结构,现提出一种带凸台的摩擦式短单元双块式无砟轨道,通过数值分析该轨道结构在垂向、纵向及横向荷载作用下的应力和应变情况,发现该结构能够满足轨道结构在正常工作情况下的应力应变要求。  相似文献   

13.
SK-2型双块式无砟轨道由双块式轨枕通过现浇钢筋混凝土组成,在无砟轨道结构类型中经济性好、维修工作量少,但我国并不拥有核心知识产权,导致其无法在我国企业承包的海外项目中应用。同时,SK-2型双块式轨枕存在长期存放容易生锈、运营过程容易产生裂纹等缺陷。在总结双块式无砟轨道结构应用经验基础上,提出一种应用于现浇道床板式无砟轨道的新型轨枕设计方案——钢管混凝土轨枕,并进行试验验证。试验表明:采用外径42mm钢管混凝土构件在0.75kN的垂向荷载作用下,轨枕处于2mm弹性变形范围内;钢管混凝土构件与轨枕块连接力为60~80kN,具有良好的连接性能。轨枕连接骨架用钢量少,不需要专用大型设备,施工方便,与道床板连接紧密可靠,适用于高速铁路、客货共线、重载铁路及城市轨道交通,为完善我国现行无砟轨道体系,满足"一带一路"建设需求,具有重要意义。  相似文献   

14.
桥梁结构刚度对高速列车—轨道—桥梁耦合系统的动力学特性具有重要的影响,直接关系到桥上列车的行车安全性和运行平稳性。基于列车—轨道—桥梁动力相互作用理论,以高速铁路常用的简支箱梁桥和双块式无砟轨道为研究对象,采用列车—轨道—桥梁动力学仿真通用软件TTBSIM2.0,研究桥梁结构刚度对高速列车—轨道—桥梁耦合系统动力性能的影响规律。结果表明:当桥梁梁体的刚度或者桥墩的横向刚度不足时,车辆和桥梁的相关动力性能指标将随着刚度的减少而急剧增大,严重影响列车过桥时的安全性和平稳性;当梁体垂向刚度不足时,有可能会引发车桥共振现象;当桥梁结构刚度满足设计规范要求时,车桥系统动力响应指标随刚度变化不明显,此时行车速度和轨道不平顺成为影响行车安全性和平稳性的主要因素。  相似文献   

15.
遂渝线无砟轨道动力学性能研究   总被引:3,自引:0,他引:3  
蔡成标  颜华  姚力 《铁道工程学报》2007,24(8):39-43,57
研究目的:研究建立无砟轨道结构动力学性能评估的方法和手段。 研究方法:应用车辆-轨道耦合动力学理论,建立列车一无砟轨道空间耦合振动模型,从而导出弹性地基上轨道板的运动方程;应用开发的无砟轨道动力学仿真软件TRACKDYNA,系统地研究评估遂渝线综合试验段无砟轨道及其过渡段的动力学性能。 研究结果:快速客车、重载货车以及普通货车通过路基上板式轨道时,轮轨垂向力、轮轨横向力、脱轨系数、轮重减载率、CA砂浆动应力、路基面动应力等动力学指标均小于容许值。 研究结论:遂渝线无砟轨道结构动力学性能满足设计要求,过渡段结构设计方案是合理的;对于双块式轨道过渡段,适当降低2种轨道连接点处双块式轨道前几个扣结点的轨下胶垫刚度,可改善过渡段的动力学性能。  相似文献   

16.
纵连式无砟轨道在路基冻胀区域极易产生轨道结构断裂破坏及结构层离缝等病害。为研究纵连式无砟轨道在路基冻胀状态下的损伤机理,文章建立车辆-轨道-路基冻胀一体化动力学分析模型,对路基冻胀状态下轮轨动力响应特征、轨道结构动力响应特征及影响因素进行分析。结果表明:路基冻胀波长为10 m时,双块式无砟轨道各动力特征达到最大值;冻胀波长大于20 m时,各动力特征逐渐趋于稳定;列车荷载在层间离缝位置处使得轨道结构反弯,轨道结构层顶部纵向拉应力增大;20 m以下冻胀波时,拉应力超过或接近设计强度值;无砟轨道各动力响应特征最大值随冻胀幅值的增加显著增大,季冻区施工及运营期间应控制冻胀幅值增加。  相似文献   

17.
研究目的:为研究重载铁路桥上长枕埋入式无砟轨道扣件系统关键设计参数取值,本文基于弹性地基梁理论和车辆-轨道耦合动力学理论,建立32.5 t轴重重载货车-长枕埋入式无砟轨道-桥梁垂向耦合动力学模型,分析扣件刚度、扣件间距对重载铁路桥上长枕埋入式无砟轨道静、动力学性能的影响规律,提出重载铁路桥上长枕埋入式无砟轨道扣件系统设计参数取值。研究结论:(1)钢轨垂向位移和钢轨轨底应力随扣件系统刚度的增大而减小,车体垂向振动加速度、轮重减载率、轮轨力和桥梁垂向振动加速度随扣件系统刚度的增大而增大;(2)钢轨垂向位移、钢轨轨底应力、车体垂向振动加速度、轮重减载率和桥梁垂向振动加速度随扣件间距的增大而增大,但轮轨垂向力随之减小;(3)综合考虑轨道变形以及工程造价,建议重载铁路桥上长枕埋入式无砟轨道扣件系统的静刚度取为40~60 k N/mm,扣件系统的动刚度取为80~100 k N/mm,扣件间距取为0.6~0.65 m;(4)本研究成果可为重载铁路桥上长枕埋入式无砟轨道结构设计提供参考。  相似文献   

18.
研究目的:采用少维修的无砟轨道结构是重载铁路长大隧道地段的必然选择,本文通过建立车辆-轨道耦合动力学模型,对不同车速、不同轴重、不同轨道结构、不同过渡形式下的系统动力响应进行对比,以确定出最佳轨道类型和过渡段类型,进而为无砟轨道在重载铁路隧道中的设计提供理论依据。研究结论:(1)车速增加对轨下结构的振动加速度影响较大;(2)随着轴重增加,除轮重减载率以外,其他各项指标均随轴重的增加而增大,且增幅较大;(3)长枕套靴式无砟轨道道床垂向应力较小,但脱轨系数大,道床垂向位移较大;双块式无砟轨道钢轨垂向位移小,但道床垂向应力、钢轨垂向力均较大;弹性支承块式无砟轨道脱轨系数和轮重减载率较小,道床垂向应力适中,利于重载铁路环境下铺设使用;(4)将有砟与无砟过渡段设置在路基上时,车辆运行的安全性指标控制得较好,并且因冲击而产生的钢轨加速度明显减小,且扣件的支反力也明显减小;(5)本研究成果对开展重载铁路无砟轨道结构设计具有参考价值。  相似文献   

19.
既有双块式无砟轨道结构在以货为主的客货共线铁路上存在扣件、轨枕安全储备不足、道床开裂严重等问题,尚未推广应用。针对上述问题,对采用WJ-12型扣件、配套无挡肩双块式轨枕的无砟轨道进行结构优化,并将隧道地段基础不均匀沉降作为偶然荷载纳入作用效应组合,基于数值模拟和极限状态法对道床板配筋进行重新设计。结果表明:为便于养护维修、增强轨道绝缘性能,满足钢筋保护层厚度,隧道地段轨道结构高度建议调整为545 mm;为减少施工流程,提高无砟轨道施工及运营质量,建议双块式轨枕取消穿筋孔设置;与高速铁路双块式无砟轨道通用参考图对比,建议客货共线双块式无砟轨道距隧道洞口小于200 m范围加强横向配筋,大于200 m范围加强纵向配筋。  相似文献   

20.
采用动柔度思想,通过建立高速列车-无砟轨道-桥梁系统垂向耦合频域分析模型来求解在单个或连续多个扣件失效下无砟轨道-桥梁系统的动柔度幅值、相位和纵向衰减率,对比分析无扣件失效、单个扣件失效及连续扣件失效等工况对系统在较宽频范围内动力学响应的影响规律。研究结果表明:无砟轨道结构其支撑的连续性在扣件失效下遭到破坏,钢轨、轨道板、底座层和桥梁的动力学响应增量明显;随着扣件失效数目的增多,各结构的动柔度幅值增长明显,其最大主频前移;由于扣件失效造成钢轨纵向衰减率在较高频段时相对减弱,且相位角提前出现跃升现象;轮轨接触力最大幅值由于扣件失效而略微降低,在车体激励下的钢轨加速度整体向低频移动;计算结果显示,扣件连续失效对系统频域下振动响应影响明显,严重影响桥上无砟轨道几何形位,对行车安全形成一定隐患。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号