首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 775 毫秒
1.
为探究曲线地段钢弹簧浮置板轨道结构振动特性,分别在钢弹簧浮置板轨道和普通道床的曲线地段进行现场测试,采用短时傅里叶变换对测试数据进行时-频处理,分析轨道结构振动时频特性。相比普通道床,在钢弹簧浮置板轨道中,钢轨和道床板振动幅值增大,振动频率向高频移动;道床板时频分布的峰值频率与车辆类型和激励原因有关;浮置板轨道中,隧道壁垂向加速度级减小23 dB,横向加速度级则增大6 dB,主要表现在8~50 Hz;隧道壁振动受到轨道板横向振动激励和浮置板轨道振动传递特性两者的影响,通过这个角度解释了曲线地段地段浮置板轨道中隧道壁横向振动放大的原因。  相似文献   

2.
涂勤明 《铁道建筑》2020,(5):135-138
对中等减振扣件轨道、梯形轨枕轨道、钢弹簧浮置板轨道、普通整体道床轨道进行环境振动现场实测,对比分析地铁列车通过时不同轨道的钢轨、道床、隧道壁振动加速度(垂向、横向)及钢轨动态变形(垂向、横向).结果表明:4种类型轨道的钢轨振动加速度相差不大;中等减振扣件轨道的道床振动加速度小于普通整体道床轨道,另外2种减振轨道明显大于普通整体道床轨道;钢弹簧浮置板轨道的隧道壁振动加速度明显小于其他轨道;钢弹簧浮置板轨道减振效果最好;中等减振扣件轨道的钢轨动态变形明显大于其他轨道.  相似文献   

3.
为研究地铁列车提速对减振垫浮置板轨道的振动特征的影响,对比分析地铁列车行车速度为80 km/h和120 km/h工况下减振垫浮置板轨道时域和频域的实测结果。分析结果表明:行车速度对减振垫浮置板轨道结构垂向位移的影响不大;行车速度为120 km/h的工况下钢轨、浮置板、隧道的振动加速度1/3倍频程的峰值较行车速度为80 km/h的工况下的峰值分别有6.2、2.8、0.5 dB的增大;分频段分析各测点振动加速度综合振级,结果显示:在0~20 Hz与20~80 Hz频段内,只有钢轨的振动加速度综合振级增长超过5%,浮置板与隧道振级变化均小于2.5%,在80~120 km/h速度范围内,行车速度的提高对减振垫浮置板轨道隧道振动的影响并不明显。  相似文献   

4.
应用ABAQUS软件建立列车—轨道—隧道—土层的动力学模型,研究钢弹簧浮置板的减振效果.在地铁列车以20 m·s-1速度运行条件下,浮置板的振动加速度峰值(15m·s-2)远大于普通轨道;铺设浮置板后隧道拱顶和地表的振动加速度峰值分别为0.07和0.005m· s-2,远小于普通轨道.频域分析表明:浮置板的振动频率在400Hz以上频段衰减很大,而100Hz以内低频成分的振动能量明显增强;浮置板轨道对于隧道拱顶在400~800Hz、地表在20~80 Hz频段内的减振效果明显.1/3倍频程分析表明:浮置板的分频振级最大增量为22 dB(中心频率为10 Hz);铺设浮置板后隧道拱顶的最大减振量为18 dB(中心频率1 016 Hz),地表的分频最大减振量为6 dB(中心频率63 Hz).Z振级分析表明:铺设浮置板后隧道拱顶和地表处的减振量分别为24和25 dB,在25~80 Hz频段的减振效果最好;因浮置板自振频率处于20 Hz以下的低频范围,能够吸收中高频振动、放大自身低频振动,所以具有阻高频、放低频的减振特性.  相似文献   

5.
120 km/h地铁多种减振轨道结构现场测试与分析   总被引:2,自引:1,他引:1  
为分析隧道内各种减振措施在地铁列车行车速度为120 km/h时的减振效果,以地铁现场测试为依托,在时域和频域内分析3种轨道结构各测试断面在行车速度为120 km/h下的振动特性。结果表明:DZⅢ-1型扣件普通整体道床轨道在各频段内对振动的衰减均有一定效果,隧道壁在低频范围内减振效果较好。梯形轨枕轨道结构轨枕至隧道壁间的振动衰减非常明显,约为50 dB。钢弹簧浮置板对振动的衰减主要在钢轨与浮置板之间完成,为50~80 dB。梯形轨枕轨道和钢弹簧浮置板轨道隧道壁主要响应频段内相对于DZⅢ-1型扣件普通整体道床轨道减振效果分别为22 dB和38 dB。  相似文献   

6.
郭强  王平  徐井芒  胡辰阳 《铁道建筑》2020,(3):123-126,140
为了研究地铁曲线段不同减振轨道的轮轨动态相互作用,通过现场实测数据对比分析了橡胶隔振垫道床轨道、钢弹簧浮置板道床轨道、梯形轨枕轨道、单趾弹条扣件轨道4种减振轨道结构的轮轨力、钢轨动态位移,以及对应断面处隧道壁的垂向振动加速度。分析结果表明:单趾弹条扣件轨道振动相对较大,钢弹簧浮置板道床振动相对较小;4种减振轨道对应的轮轨垂向力、横向力、脱轨系数均满足列车安全运营要求;钢弹簧浮置板道床轨道的钢轨动态位移平均值较大,但小于安全限值。  相似文献   

7.
研究目的:地铁常用减振型轨道结构由于采用不同的轨道横向限位方式,改变了钢轨的横向振动特性。为研究不同减振措施对钢轨横向振动特性的影响,本文对国内某城市地铁2号线常用减振型轨道结构进行钢轨横向加速度导纳和横向振动沿纵向的衰减率的测试分析。研究结论:(1)在频率100 Hz以下,减振垫浮置板道床的非刚性横向支承使得钢轨横向加速度导纳幅值大于普通DZⅢ-1型扣件整体道床,而钢弹簧浮置板轨道钢轨横向加速度导纳幅值在50 Hz以下大于DZⅢ-1型扣件整体道床;(2) GJ-Ⅲ型减振扣件的采用使得钢轨有着相对较低的横向弯曲共振频率,钢弹簧浮置板道床和减振垫浮置板道床的水平限位方式减弱了浮置板与基底的横向耦合,改变了200 Hz以下钢轨横向振动沿纵向的衰减率;(3) GJ-Ⅲ型减振扣件使得钢轨横向衰减率在中心频率2 500 Hz以下均小于DZⅢ-1轨道,并维持在较小的范围内,不利于减小钢轨横向振动产生的声辐射;(4)本研究成果对目前常用减振型轨道结构中钢轨横向振动特性的研究具有参考价值。  相似文献   

8.
由于浮置板轨道减振效果较好,在地铁建设中使用比例大幅度增加。结合杭州地铁1号线钢弹簧浮置板和橡胶浮置板的测试结果,对比分析两种浮置板的自振特性、隧道内和地面减振效果。分析结果表明:受不同的轨道结构形式、不同的列车类型、运行速度、隧道结构等诸多因素影响,钢弹簧浮置板和橡胶浮置板轨道有不同的振动频率特性;钢弹簧浮置板竖向自振频率为7.90 Hz,橡胶浮置板竖向自振频率为14.87 Hz,钢弹簧浮置板和橡胶浮置板的高频减振效果高于低频的减振效果;橡胶浮置板对于高于25 Hz的振动有8~16 dB的减振效果;弹簧浮置板对于高于12.5 Hz的振动有8~22 dB的减振效果,钢弹簧浮置板轨道对于控制列车运行产生的环境振动更有效。  相似文献   

9.
钢弹簧浮置板轨道是我国城市轨道交通采用的主要减振措施之一。在北京地铁5号线灯市口站—东四站区间,测试运营地铁在浮置板轨道地段和普通整体道床地段的地面垂向振动加速度,并进行时域和1/3倍频程频谱分析。分析结果表明:钢弹簧浮置板轨道对隧道正上方减振效果最好,在两侧,随着距离的增大减振效果逐步变小。钢弹簧浮置板轨道对10 Hz以内的振动成分没有作用,地面振动的能量主要分布在10~20 Hz,钢弹簧浮置板轨道对此频域范围内的减振效果最好。  相似文献   

10.
为了研究地铁隧道内浮置板轨道的实际减振效果,以我国某地铁线路的隧道段为研究对象,测试了普通道床轨道、重量级和中量级浮置板轨道产生的振动响应,分别在时域和频域内对各种轨道的振动特性进行对比分析,并采用Z振级进行综合评价,结果表明:轨道板和隧道壁的主要响应频段在80 Hz附近;重量级和中量级钢弹簧浮置板道床振动响应有5.3 dB的差异;各减振断面的隧道壁振动均满足相关规范的要求。  相似文献   

11.
针对橡胶弹簧浮置板道床独特的结构,对橡胶弹簧浮置板道床区段和普通整体道床地段列车通过时的钢轨、道床、隧道壁的垂向振动加速度进行现场实测,通过测试数据分析得出了橡胶浮置板的振动特性及减振效果。期望研究结果对类似工程的减振型式选型、设计取值提供参考和借鉴。  相似文献   

12.
道岔是一种机车车辆转换线路的连接设备,而地铁道岔一般设置在车站范围,在几条地铁线路穿插运行时,列车通过产生的噪声较大,尤其邻近居民住宅和地下商铺时,无法有效对噪声进行控制。近年来钢弹簧浮置板道床广泛应用在轨道交通领域,其将整体道床和弹性阻尼隔振器有机结合形成质量与弹簧减振体系,能够吸收和抑制结构噪声传导,具有良好的三维弹性与稳定性,能够大幅降低列车行驶中对环境的振动和噪声影响。为科学评价钢弹簧道岔系统实际减振效果,本文综合分析列车通过车站时的钢轨、浮置板、隧道壁振动特性,从时域和频域两方面对比分析各类轨道结构减振效果以验证钢弹簧减振道岔的性能。  相似文献   

13.
对某地铁状态正常的钢弹簧浮置板段、一侧隔振器浸水段、两侧隔振器浸水段和普通整体道床段的过车响应进行现场实测。结果分析表明,钢弹簧浮置板作为特殊减振轨道结构,具有良好的减振效果。状态正常的浮置板相对于普通整体道床减振效果可达16.8 d B(隧道壁Z计权振级插入损失),随着浸水量的增加,减振效果逐渐减弱,分别为9.8d B(一侧浸水)、0.6 d B(两侧浸水)。浸水对16~200 Hz频段的减振效果影响明显,对16 Hz以内频段的减振效果基本没有影响。  相似文献   

14.
轨道型式对地铁与建筑物共建结构振动响应的影响   总被引:2,自引:0,他引:2  
以上海某地铁站与建筑物共建工程为例,现场实测由于地铁运行引起的车站站厅层、上部结构各楼层的动力响应,建立道床—共建结构—地基二维动力有限元模型。通过对比分析计算和实测的共建结构竖向振动加速度的时域谱和1/3倍频程振级谱,探讨普通轨道、科隆蛋高弹扣件轨道和钢弹簧浮置板轨道在引起共建结构振动响应方面的差异。研究结果表明:采用科隆蛋高弹扣件轨道时,共建结构同一位置的加速度峰值约是普通轨道的1/2,而固有频率为6 Hz的钢弹簧浮置板轨道的加速度峰值仅为普通轨道的1/10左右,但钢弹簧浮置板轨道引起的振动周期和持时相对较长;科隆蛋高弹扣件轨道与钢弹簧浮置板轨道均有明显的减振效果,所不同的是前者对25 Hz以下、后者对25 Hz以上频段的竖向振动有较好减振效果;钢弹簧浮置板固有频率的变化对该共建结构振动响应的影响很小。  相似文献   

15.
根据某地铁曲线地段现场实测数据,针对钢弹簧浮置板浸水对其减振效果及振动传递的影响进行分析。结果表明:作为特殊减振轨道结构,钢弹簧浮置板能有效地衰减道床面与隧道壁之间的振动传递,正常工作时加速度级最大衰减量(传递损失)高达44.3 d B;浸水后在10~200 Hz频段,随着浸水量增加,道床面的加速度级逐渐减小,隧道壁的加速度级逐渐增大,道床传递至隧道壁的传递损失值逐渐减小,单侧浸水测试断面传递损失值减小至25~35 d B,两侧浸水测试断面传递损失值则降至10~25 d B;正常浮置板、单侧浸水及两侧浸水测试断面道床面至隧道壁的垂向传递函数值基本范围分别为0~0.01、0.01~0.05和0.04~0.3,依次呈增大趋势。这说明,作为振动传导体,水对10~200 Hz频段的振动传递影响显著。  相似文献   

16.
根据某地铁曲线地段现场实测数据,对钢弹簧浮置板浸水对其减振效果及振动传递的影响进行分析。结果表明:作为特殊减振轨道结构,钢弹簧浮置板能有效地衰减道床面与隧道壁之间的振动传递,正常工作时加速度级最大衰减量(传递损失)高达44.3 dB;浸水后,在10~200 Hz频段,随着浸水量增加,道床面的加速度级在逐渐减小,隧道壁的加速度级在逐渐增大,道床传递至隧道壁的传递损失值逐渐减小,单侧浸水测试断面传递损失值减小至25~35 dB,两侧浸水测试断面传递损失值则降至10~25 dB;正常浮置板、单侧浸水及两侧浸水测试断面道床面至隧道壁的垂向传递函数值基本范围分别为0~0.01、0.01~0.05和0.04~0.3,依次呈增大趋势。这说明:作为振动传导体,水对10~200Hz频段的振动传递影响显著。  相似文献   

17.
在苏州轨道交通2号线隧道内采用III型轨道减振器扣件、中量级钢弹簧浮置板道床以及重型钢弹簧浮置板道床等3种减振措施的代表断面上,采用落锤法测量钢轨、轨枕、道床及隧道侧壁测点的振动时域信号,计算得到各断面上测点的传递函数,并评价分析了这3种减振措施的性能。选取对列车振动较敏感的轨道下穿居民小区路段进行地面振动测试,分析了地下列车运行对居民生活的振动影响。研究结果表明,苏州轨道交通所采取的大埋深及重型钢弹簧浮置板道床等减振措施是卓有成效的。  相似文献   

18.
以南昌地铁1号线邻近建筑二中宿舍楼为研究对象,基于动力反应分析理论,建立隧道-大地-建筑的三维有限元模型,在计算边界域施加黏弹性人工边界,研究双线双向隧道上行线和下行线不同隔振工况下,宿舍楼室内的振动响应及振动在楼层之间的传递规律。研究结果表明:上行线和下行线隧道均采用整体道床时,室内振动超出标准;如果仅在上行线隧道采用钢弹簧浮置板道床进行隔振,室内振动降低到标准以内,但是富余量不大;当上行线和下行线隧道均采用钢弹簧浮置板道床进行隔振时,宿舍楼室内的振动大大降低,距标准规定的限值有很大的富余量。研究发现钢弹簧浮置板对6.3~15 Hz范围内的振动有放大效应,隔振区间主要在15 Hz以上;低频振动随着楼层的升高而增强,Z振级在各楼层之间变化不大。  相似文献   

19.
不同时速下地铁多种轨道结构现场测试与分析   总被引:2,自引:2,他引:0  
近年来地铁振动污染问题日益突出,地铁中亦采用多种减振轨道结构型式用于减振。为详细评价各种减振轨道结构的减振效果,以地铁动力测试为依托,在频域内分析4种轨道结构各测试断面在不同时速下的振动特征。结果表明:对于长枕埋入式整体道床轨道而言,行车速度的增加对钢轨、道床、隧道竖向加速度低频范围内的影响较大,而在中高频影响较小。对于GJ-Ⅲ型中等减振扣件轨道,随着行车速度的增加,GJ-Ⅲ型中等减振扣件轨道减振效果下降较明显。同时随着行车速度的提高,橡胶隔振垫浮置板轨道仅对浮置板和隧道减振效果较稳定,而钢弹簧浮置板轨道对钢轨、浮置板及隧道减振效果都很稳定。  相似文献   

20.
为研究时速120 km地铁多种减振轨道结构的振动特征及振动传播规律,对比分析了某时速120 km地铁线路上的DZ-Ⅲ型减振扣件轨道、GJ-Ⅲ型减振扣件轨道、减振垫浮置板轨道在时域和频域内的实测结果。时域分析结果表明:3种轨道结构的浮置板(道床板)振动加速度幅值大致相等,减振垫浮置板轨道处隧道振动加速度幅值比其余2种轨道处小一个数量级,更有效地削减了振动加速度幅值。频域分析结果表明:在20~80 Hz和0~20 Hz频段内,减振垫浮置板轨道的隧道振动加速度级比另外2种轨道小,减振效果更好。除GJ-Ⅲ型减振扣件轨道钢轨与道床板间在0~80 Hz频段内衰减不明显外,振动加速度的传播大致遵循由钢轨到浮置板(道床板),再到隧道逐层衰减的规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号