首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
以上海轨道交通5号线跨越黄浦江的公路、轨道交通两用连续钢桁梁斜拉桥--闵浦二桥为工程背景,基于梁格法理论,建立大跨度板桁组合体系桥梁车辆-桥梁系统耦合振动分析模型的快速合理的等效简化方法,阐述了此类桥梁的动力特性以及各部分构件对桥梁动力特性的贡献。分析结果表明,等效前后的模型在动力特性方面具有良好的一致性,等效后的模型可用于车桥耦合振动分析。该等效简化方法为建立大跨度板桁组合体系桥梁车桥耦合振动分析的简化模型提供了一种简捷的方法。  相似文献   

2.
以某公铁两用斜拉桥为研究对象,借助空间杆系有限元方法,用等效格子梁来模拟公路与铁路正交异性板钢桥面,建立了公铁两用斜拉桥的动力分析模型;分别用桥梁动力分析程序BDAP及通用软件ALGOR计算了该斜拉桥的空间自振特性,两者取得较好的一致,在此基础上,对该公铁两用斜拉桥的动力特性进行分析。  相似文献   

3.
为研究加劲梁外伸跨布置形式和约束体系对大跨度悬索桥结构动力特性的影响,基于国内某主跨1098 m的单跨悬索桥设计方案,采用有限元软件分别建立设置外伸跨、未设置外伸跨、设置悬吊外伸跨及加劲梁不同约束体系等多个模型.开展全桥动力特性分析,对比不同模型悬索桥结构动力特性的差异,分析加劲梁外伸跨布置形式和约束体系对该悬索桥刚度...  相似文献   

4.
南京大胜关长江大桥桁拱部分节段模型试验研究   总被引:1,自引:0,他引:1  
南京大胜关长江大桥是京沪高速铁路上一座三主桁六线铁路钢桁梁(拱)桥,采用混凝土与钢正交异性板相结合的整体桥面,多横梁体系,钢正交异性板与下弦杆焊连在一起。研究该桥桁拱部分1∶6的6节间拱段模型的设计原则、试验的主要内容及相应的结果分析,介绍为反映节段模型在全桥中受力状态而采用的桥面加载辅以节点加载的"组合加载"方式。试验考察道碴整体桥面的受力状态,试验结果表明节段模型设计正确,"组合加载"的方式能正确反映节段模型在全桥中的受力状态,验证了空间有限元分析的准确性。  相似文献   

5.
杭瑞(杭州—瑞丽)高速公路洞庭湖大桥主桥为(1480.0+453.6)m的双塔公路悬索桥,加劲梁采用钢桁梁结构,2片主桁横向间距35.4 m;主桁采用带竖杆的华伦式桁架,桁高9.0 m,节间长度8.4 m。钢桁梁上层桥面与主桁上弦杆结合(板桁结合),桥面采用超高韧性混凝土(Super Toughness Concrete,STC)轻型组合桥面结构。对主桥采用的关键技术进行了研究,分析中央扣对悬索桥结构体系的影响以及桁高对悬索桥加劲梁刚度的影响,并在设计中提出了轻型组合桥面板桁结合型加劲梁结构体系,在施工中提出了悬索桥钢桁加劲梁多节段窗口刚接法架设技术。  相似文献   

6.
正交异形钢桥面板的常用建模分析方法包括空间杆系法(SF)、空间板梁法(SPB)以及空间板壳法(SP),采用各种方法进行分析时的计算量与计算精度各有优劣,有必要进行对比研究。以一座连续钢桁梁柔性拱桥正交异性钢桥面节段为对象,结合现有规范分别建立了SF,SPB以及SP计算模型,并对3种建模方法与分析结果进行对比。研究结果表明:3种建模方法的受力行为较为接近;SPB模型的应力峰值更大,模型刚度也更大;依据现有规范中有效宽度建立的SF模型的横梁应力分析结果与其他2种模型存在较大差异,横梁有效宽度取值方面有待进一步研究。  相似文献   

7.
正交异性板道砟桥面钢桁梁设计   总被引:1,自引:0,他引:1  
以96 m正交异性板道砟桥面钢桁梁为研究对象,根据主桁下弦杆为拉弯构件的受力特点,设计中适当增大主桁下弦杆的竖向抗弯刚度。通过取消传统的钢混组合式道砟槽板,采用新型MMA防水体系+CAP轻质垫层+钢挡砟墙桥面系布置,减小二期恒载30%以上,有效减小了主桁用钢量。为了解决正交异性钢桥面板活载加载计算工作量大的问题,提出了正交异性板桥面系虚拟影响面加载法。钢桁梁的各项刚度指标分析结果表明:本桥具有较大的整体刚度,满足200 km/h的列车行车速度要求。结合桥址实际情况,在钢桁梁小夹角上跨既有铁路状况下,采用转体施工法进行钢桁梁架设。  相似文献   

8.
襄渝铁路增建二线牛角坪特大桥动力特性分析   总被引:1,自引:1,他引:0  
在借鉴总结以往类似结构计算分析的基础上,建立了以实体元和空间梁元组成的全桥空间有限元模型,运用大型通用结构计算分析软件ANSYS对牛角坪双线特大桥的动力特性进行了计算,分析了岩石地基对全桥结构动力特性的影响,根据全桥动力特性确定了桥梁具体尺寸,比较了连续刚构桥与刚构连续组合梁桥动力特性的异同。  相似文献   

9.
斜拉式预应力混凝土连续桁架铁路桥梁的力学特性分析   总被引:1,自引:0,他引:1  
文中简单介绍了斜拉式预应力混凝土连续桁架铁路桥梁的力学构思及结构特点,论述了选取平面力学计算模型和空间计算模型的有关问题,并分析了斜拉桁梁的力学特性以及主桁杆件的预加力效能。简单介绍了斜拉桁梁的动力特性。  相似文献   

10.
桥上CRTSⅡ型板式无砟轨道纵连底座板受力计算模型比较   总被引:2,自引:2,他引:0  
桥上CRTSⅡ型板式无砟轨道设计时采用"线-板-桥-墩"空间一体化模型计算纵向力,模型中轨道板与纵连底座板简化为一层复合结构。建立一种桥上CRTSⅡ型板式无砟轨道"线-板-板-桥-墩"空间一体化模型,将轨道板与纵连底座板分别模拟,并通过砂浆阻力相互作用,模型采用有限单元法求解。采用两种模型对一座大跨连续梁桥上纵连底座板的制动力和伸缩力进行对比计算。结果表明,纵连底座板的制动力和伸缩力采用"线-板-板-桥-墩"空间一体化模型的计算结果更小,纵连底座板配筋设计采用"线-板-桥-墩"空间一体化模型具有更高的可靠性。  相似文献   

11.
武广客运专线跨越武汉长江,新建武汉天兴洲公铁两用斜拉桥,首次采用主跨为504 m的钢桁梁.钢桁梁弦杆节点与横梁、公路桥面正交异性板、主桁的连接采取焊接方式,工期紧,施工难度大,对施工安全要求高.为加快建桥速度,满足工期要求,针对钢桁梁结构特点,经对架设方案的论证,拟采用整节段架设方案.在阐述钢桁梁采用整节段架设能保证工程质量、施工安全和进度,减少对通航的影响的基础上,并与采用单根杆件架设方案进行经济性比较和评价.结果表明,钢桁梁整节段架设方案优于单根杆件架设方案,并节省成本166万元.实施后达到了预期目标和效果.  相似文献   

12.
徐盐高铁盐城特大桥为全线控制性工程,主桥横跨新洋港,采用跨度布置为(72+96+312+96+72) m的双塔双索面连续钢桁梁斜拉桥,半漂浮体系、塔梁之间设置阻尼器及速度锁定装置。主梁采用2片主桁,三角形桁式,桥面为正交异性板整体钢桥面,道砟槽范围内采用热轧不锈钢复合钢板。桥塔为H形花瓶式混凝土塔,塔座以上全高123 m,交接墩和辅助墩采用拱形双柱式门式墩。全桥共设置48对环氧平行钢丝斜拉索,平行索面,呈扇形布置,在塔端采用齿块锚固,在梁端采用锚拉板锚固。考虑施工期间台风影响周期较长且强度较大,利用桥址特点,边跨钢梁采用支架法架设,主跨钢梁利用桥面架梁吊机单向悬拼架设,并配合有效的抗风措施,大幅提高了施工过程中的结构抗风稳定性。  相似文献   

13.
双索悬索桥结构参数对自振特性的影响分析   总被引:3,自引:0,他引:3  
引入只受拉三维拉索单元,采用考虑几何非线性的子空间迭代法对黄河大峡水库下游某双索悬索桥自振特性进行分析,理论值与实测值能较好的吻合,说明该空间非线性有限元分析方法的正确性;进而将该桥与相同跨径和结构参数的单索悬索桥的自振频率、振型进行对比分析,结果表明双索悬索桥能有效提高桥梁一阶竖弯振动频率。最后,讨论恒载集度、加劲梁刚度、矢跨比等结构参数变化对双索悬索桥自振特性的影响,为双索悬索桥结构设计理论提供了动力性能方面的依据。  相似文献   

14.
章耀林 《铁道建筑》2020,(5):30-33,37
重庆鹅公岩轨道专用桥桥跨布置为(50+210+600+210+50)m,是目前世界上跨度最大的自锚式悬索桥.该桥加劲梁为5跨连续梁,锚跨和锚固段为混凝土梁,其余为钢箱梁.加劲梁锚固段采用可滑移现浇支架施工,锚跨采用常规现浇支架施工,边跨采用顶推法施工,中跨采用斜拉扣挂法施工.加劲梁先合龙边跨,后合龙中跨,最后合龙锚跨.通过在塔梁交叉处设置纵向位置调整系统、在混凝土锚跨下设置可纵向滑移支架主动控制合龙时机,避免了天气条件的不利影响,缩短了工期;通过有效控制锚固段及锚跨混凝土梁段的变形,减少施工对混凝土的扰动,从而控制混凝土梁段的质量;通过优化支架结构降低支架复杂程度和安全风险,从而降低支架费用.该桥加劲梁的合龙技术,可为同类桥梁施工提供借鉴.  相似文献   

15.
德大铁路黄河特大桥主桥钢梁结构设计   总被引:1,自引:1,他引:0  
德大铁路黄河特大桥主桥为1-(120+4×180+120)m下承式变高度连续钢桁梁,需要满足近期单线、远期双线的Ⅰ级铁路行车要求,具有跨度大、结构高的特点。首先介绍主桥的总体布置,而后对设计中采用的变高度"N"形主桁、正交异性整体钢桥面板、空间上平纵联、阻尼器、桥面柔性防水保护层、钢轨伸缩调节器、钢梁防腐涂装要求都作了详尽的说明。最后对钢梁的悬臂施工过程、70t固定式桅杆起重机进行介绍。  相似文献   

16.
黄琼  叶梅新 《铁道学报》2008,30(1):122-126
基于能量原理,提出计算自锚式悬索桥受力性能的简化计算方法,对双塔三跨自锚式悬索桥导出求解加劲梁内力、挠度和主缆水平分力的基本公式.该法将自锚式悬索桥的主缆和吊杆截开,用未知力来代替,分别取主缆和连续加劲梁为隔离体进行分析,通过迭代逐步逼近,使两者满足受力协调条件,对主缆同时考虑恒载和活载作用下的挠度,对加劲梁同时考虑轴力和弯矩的作用以及梁柱效应.算例结果表明,该简化计算方法的计算结果收敛速度快,与几何非线性有限元法的计算结果吻合良好.  相似文献   

17.
万州长江大桥钢桁拱系杆梁桥架设技术   总被引:2,自引:0,他引:2  
万州长江铁路大桥采用刚性拱柔性梁的新型桁拱结构。针对大桥架设工序复杂、技术难度大等特点,采用边跨168 m钢梁在膺架上拼装及半悬臂拼装,中跨360 m钢梁利用吊索塔架辅助双向全悬臂架设、跨中合拢的方法进行拼装。钢梁架设由既可以在平弦上进行钢梁架设、又可以在斜坡上行走架设钢桁拱的架梁吊机完成。桥梁架设的关键技术及创新点包括:边跨钢梁临时支墩设计及施工、吊索塔架设计及施工、斜爬式架梁吊机设计及施工、墩顶纵横移设备布置、边跨钢梁端部压重施工、跨中桁拱及系杆合拢等。  相似文献   

18.
三门峡黄河公铁两用大桥为蒙西至华中地区铁路煤运通道跨越黄河的控制性工程,通行双线重载铁路、双线Ⅰ级铁路及6车道高速公路,全长5 663. 754 m,其中公铁合建段长1 762. 733 m。主桥采用(84+9×108+84) m连续钢桁结合梁,钢桁梁为3片主桁结构,中边桁中心距13. 6 m,每片主桁均采用无竖杆的三角形桁架,桁高15 m,节间长12 m。下层铁路桥面采用正交异性整体钢桥面板;上层公路桥面采用混凝土板与主桁结合的组合结构。钢梁材质采用Q370qE。设计活载合计473. 2 k N/m。桥墩采用圆端形门式空心墩,基础采用钻孔桩基础。主桥采用双曲面减隔震支座及合理的构造处理有效提高了结构抗震性能。钢桁梁采用顶推法施工,公路桥面板采用预制架设法施工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号