首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
列车速度对车辆—轨道—路基系统动力特性的影响   总被引:1,自引:0,他引:1  
根据列车运行的实际情况,将轨道一路基作为参振子结构纳入车辆计算模型,建立车辆、钢轨、轨枕、道床、路基和地基为一体的二系垂向耦合动力分析模型,分析列车速度变化对车辆运行品质、动位移以及路基动应力的影响.结果表明:车体加速度、动轮载和轮重减载率均随车速的提高而增大,呈线性分布;具有二系悬挂的高速列车通过有砟轨道路基结构时,列车的安全性及舒适度均能满足要求;系统动位移受速度影响较小;路基面动应力随速度的提高而增大,并在横向呈马鞍形分布,在纵向呈抛物线形分布;路基动应力沿路基深度方向衰减较快,在基床表面下3m处,动应力只有基面的16%左右.研究结果与已有部分研究结论吻合较好,表明模型具有较高的可靠性.  相似文献   

2.
结合高速铁路路基基床动力响应现场实测与有限元计算,分析了无砟轨道路基动应力、动变形和振动加速度的幅值特征及变化规律,揭示了列车荷载作用下基床内应力、应变的分布规律。研究结果表明:轨道路基基床动应力范围为11~16 k Pa,随车速变化不明显,随轴重增大而增加,每1 t轴重产生动应力约为1.02 k Pa;无砟轨道路基基床表面动应力分布范围较大且相对均匀,动应力随深度衰减较缓慢;无砟轨道路基动变形较小,随着路基刚度的增大动变形减小且分布较均匀,路基对线路整体刚度影响不大;无砟轨道路基振动加速度一般不大于10 m/s2,振动主频100~500 Hz。  相似文献   

3.
研究目的:路基基床承受列车和轨道荷载,必须具有足够的强度和稳定性.随着列车速度不断提高,对路堑基床在高速列车动载作用下的力学响应进行现场测试分析,对于正确的进行高速铁路路基设计具有重要的指导意义.研究结论:通过动响应现场实测,研究了时速300~350 km的机车通过武广高铁红黏土路堑基床时的动响应规律.分析了不同方向列车行驶条件下,振动速度、振动加速度、动应变、动应力沿基床横向、深度方向的分布规律.分析表明:竖向测试断面上振动速度、振动加速度、动应变、动应力等动响应参数均随深度增大而衰减;横向测试断面上,右线车作用下基床动响应近似呈倒“V”字形变化,左线车作用下随水平距离的增大而减小.与有砟轨道基床动响应测试成果对比表明:同等条件下,无砟轨道基床动响应小于有砟轨道,且无砟轨道下动响应衰减速率慢,影响深度大,因此建议高速铁路无砟轨道基床厚度取5.0m左右.研究结果对其它高速铁路的建设有重要的借鉴作用.  相似文献   

4.
遂渝线无砟轨道桩网结构路基现场动车试验测试分析   总被引:2,自引:0,他引:2  
遂渝线无砟轨道综合试验段是我国首条成区段铺设的无砟轨道铁路,在综合试验段上试用桩网结构解决土质路基上铺设无砟轨道的技术难题.为考察桩网结构路基在不同列车荷载作用下的响应规律,尤其是对网垫层的动力作用大小,结合工程实践,对无砟轨道桩网结构路基进行现场动车组和货物列车试验测试.结果表明:采用无砟轨道结构可以有效改善列车荷载对路基基床的动力作用,测得的动应力与加速度值均远小于有砟轨道结构测得的值;列车轴重对无砟轨道路基的动应力影响明显,对加速度响应也有一定影响;无论是动车组还是货物列车,其运行速度对路堤部分的动响应影响均有限;动应力与加速度经3 m高的路堤后衰减,对桩网结构路基下部的网垫层已基本无影响.  相似文献   

5.
为探究轨道-路基结构的动力响应及结构存在损伤时对系统动力响应的影响,以速度350 km/h的高速铁路无砟轨道-路基结构为研究对象,建立无砟轨道-路基-地基大耦合的全尺寸三维数值模型,考虑CA砂浆黏弹特性与土体材料非线性,模拟轨道-路基系统在10 s动荷载作用下竖向动位移、动应力及动加速度的变化规律。研究结果表明:考虑CA砂浆层和土体的非线性属性时,与弹性材料相比无砟轨道-路基结构的竖向动位移和动加速度的计算结果均增大、竖向动应力均减小。CA砂浆层掉块对轨道板的竖向动位移、动应力和动加速度影响显著;底座板以下结构的动力响应降幅明显。由此得出结论:低弹模的CA砂浆起到了良好的调整和减振作用。当分析轨道-路基系统整体的竖向动位移,以及轨道板的竖向动应力和竖向动加速度时,保证计算结果准确性,需考虑两种材料的非线性。CA砂浆层脱空区域边缘的竖向动应力增长明显,当CA砂浆板中掉块长度达到1.25 m时,应尽快维修。  相似文献   

6.
不均匀沉降对无砟轨道路基动力特性的影响   总被引:3,自引:3,他引:0  
为探讨不均匀沉降对高速铁路无砟轨道路基动力特性的影响,建立CRTSⅡ型板式无砟轨道-路基系统的三维动力有限元模型,计算并对比分析有病害和无病害条件下路基的竖向动应力、动位移及振动加速度在空间上的分布规律,结果表明路基不均匀沉降导致无砟轨道路基的动力响应幅值及其空间分布规律发生明显的改变,且主要集中在支承层宽度范围、路基面以下0~1.5m深度内。由不均匀沉降引起路基动应力幅值可达100kPa,为无病害路基的3倍以上,动加速度幅值为无病害路基的2倍以上,在列车循环荷载作用下沉降区域将加速扩大,对路基产生非常不利的影响。  相似文献   

7.
基床翻浆引起无砟轨道路基不均匀沉降,降低线路平稳性,影响高速铁路行车安全,一般采用注胶工艺对其进行整治。为评价基床翻浆段板式无砟轨道路基注胶整治效果,在沪宁城际路基翻浆工点进行现场行车测试试验,基于动力学响应指标分析方法研究基床翻浆注胶前后无砟轨道路基振动特性。结果表明:基床翻浆导致底座板与基床表层接触状态劣化,并改变无砟轨道路基的支承条件及传力路径,使振动能量垂向传递在底座板-路基面结构层间衰减较多;注胶加固后,轨道板和底座板振动位移、振动加速度、振动速度值大幅减少。其中,底座板是受注胶加固影响较大的结构层,其振动减小较大,列车以速度280km/h通过时,动位移均值从0.31mm减至0.16mm,减少48.4%;振动加速度均值从3.44m/s2减至1.13m/s2,减少67.2%。以上数据表明注胶后路基与底座板接触状态明显改善,路基已恢复参振耗能功能和对无砟轨道的支承作用,且振动波垂向衰减速率变大,列车速度对无砟轨道路基振动特性影响变小,注胶整治效果良好。  相似文献   

8.
高速铁路路基-地基系统振动响应分析   总被引:3,自引:1,他引:2  
推导了有砟轨道-路基-地基系统在轮轨接触点处的柔度矩阵,建立了考虑轨道不平顺的车辆-有砟轨道-路基-层状地基垂向耦合振动解析模型。通过算例分析了单台TGV高速动车引起的路堤本体-地基系统振动,得到路堤本体表面的垂向位移,研究了列车速度、轨道不平顺、基床刚度和路堤土体刚度对路堤本体振动的影响。研究结果表明:路堤本体垂向位移主要由移动列车轴荷载引起;随着列车速度的提高,路堤振动的"波动性"明显增加;基床刚度和路堤土体刚度对路堤振动影响显著,可通过增大基床和路堤土体刚度来减小高速列车引起的路基振动。  相似文献   

9.
土质路基上板式无砟轨道结构的动力学性能仿真研究   总被引:1,自引:1,他引:0  
依据系统工程理论的思想,基于车辆—轨道耦合动力学理论和有限元理论,建立机车车辆和板式无砟轨道结构的力学模型,采用ABAQUS软件实现滚动接触过程的轮轨接触的模拟,对铁路客运专线土质路基板式无砟轨道结构在高速行车条件下的动力学性能进行仿真分析研究。结果表明:板式无砟轨道结构的平顺性很好;动车组轮轨垂向力、轮重减载率、轮轨垂向力动载系数和各轮脱轨系数的最大值及其离散性均随着列车速度的提高而增大,整个动车组所有车轮的轮轨横向力最大值以及各轴的轮轴横向力均远小于安全控制值;板式无砟轨道结构各部分的振动加速度和主要振动频带范围随着列车速度的增大而增大;板式无砟轨道结构的振动衰减情况良好。  相似文献   

10.
高速铁路无砟轨道基床翻浆是一种特殊的路基新型病害,影响高速铁路运营的舒适性和安全性,为分析无砟轨道路基基床翻浆对路基动力响应特征的影响,开展无砟轨道-路基基床大比例模型试验。试验结果表明:基床翻浆状态时,在动荷载下底座板对基床表层产生瞬态碰撞,使得基床表层土动压力随动荷载加载次数的增大而逐渐增大,沿深度衰减速率变快;基床翻浆改变了基床表层与底座板之间的动力传递特性,竖向振动加速度比值增大了1. 95倍以上,动位移比值增大了4. 56倍以上,振动响应从底座板传递至基床表层衰减梯度增大;基床表层翻浆不断恶化,会降低基床表层对底座板的支承能力,致使无砟轨道-路基基床动力响应加剧。  相似文献   

11.
基于车辆-轨道单元的无砟轨道动力特性有限元分析   总被引:6,自引:0,他引:6  
张斌  雷晓燕 《铁道学报》2011,33(7):78-85
根据CRTSⅡ型无砟轨道系统结构特点,建立列车-轨道-路基耦合系统动力分析模型,提出一种包含钢轨、扣件、轨下垫板、预制轨道板、CA砂浆层、混凝土支承层及路基的无砟轨道单元,并推导该单元刚度矩阵、质量矩阵和阻尼矩阵。运用Lagrange方程建立高速列车通过时无砟轨道动力特性分析的有限元数值方程。结合实例,研究无砟轨道轨下垫板、CA砂浆层、路基等结构参数对轨道振动的影响,并对有砟轨道与无砟轨道连接段动力特性进行分析,分析时考虑列车速度、轨道基础刚度等影响因素。计算结果表明:无砟轨道结构参数合理取值与刚度合理匹配可显著提高轨道整体工作性能;连接段轨道基础刚度变化对钢轨垂向加速度和轮轨作用力均有影响,其影响随列车速度提高而增大;连接段采取轨道刚度渐变过渡措施,可明显降低车辆-轨道结构冲击振动,有效改善行车品质。  相似文献   

12.
高速铁路无砟轨道路基填料动力试验荷载分析   总被引:1,自引:1,他引:0  
为获得高速铁路无砟轨道路基填料的动力试验参数,建立无砟轨道-路基系统三维有限元数值模型,模拟8辆编组的动车运行过程,结合实测数据分析轨道不平顺、列车速度、轴重、深度等因素对竖向动应力的影响。结果表明:路基动应力的一次加卸载过程,由同一转向架的两对轮载或相邻转向架的两对轮载共同完成;车速对动应力幅值影响较小,但引起路基承受荷载的作用频率呈线性增大;列车车轴重每增加10 kN,路基表面的动应力增加约0.97 kPa;无砟轨道路基承受荷载的作用频率为车长频率的1~4倍,且轨道不平顺没有改变荷载主频。依据动应力时程曲线特征及其频谱特征,采用全压正弦函数建立路基填料动力试验荷载表达式,加载频率可取车长频率的1~3倍。  相似文献   

13.
桩板结构被广泛应用于我国高速铁路深厚软土地区地基处理,其对路基与桥梁间不均匀沉降控制具有显著效果,但针对桩板结构路桥过渡段上无砟轨道的结构动力特性却鲜有研究。以杭长高铁桩板结构路桥过渡段为研究对象,采用现场实车测试,分析不同行车速度下过渡段和相邻桥梁上无砟轨道结构动力特性及其差异。研究结果表明,随行车速度增加,钢轨和轨道板加速度呈指数增长,轨道板动位移呈线性增长;同一行车速度下,过渡段和桥梁上轨道结构振动无突变现象,差异性小;由行车测试数据拟合结果预测行车速度达到350 km/h时,过渡段上钢轨加速度约为2 324 m/s~2,轨道板动位移约为0.49 mm,轨道板加速度约为17.89 m/s~2。  相似文献   

14.
采用混凝土损伤塑性模型描述双块式无砟轨道道床板的力学行为,以变温作用下道床板最大损伤状态作为初始条件、车辆—双块式轨道耦合动力分析得到的各钢轨支点压力作为轨道路基的外部激励,进行变温和列车动荷载共同作用下道床板损伤的演变规律及道床板损伤对结构受力影响的研究.结果表明:在降温过程中道床板会发生横向弯曲变形,产生损伤,导致受拉承载力下降;在升温过程中由于降温导致的道床板拉伸损伤不可恢复,所以道床板损伤值不变,最终保持在0.23左右,但刚度出现恢复现象;车辆经过已损伤的道床板时,道床板内部裂纹交替张开与闭合,刚度出现短暂的部分恢复阶段,刚度退化系数最大幅值为0.057,而道床板损伤值不变,且道床板的位移和加速度幅值、支承层与基床表面的动应力幅值均比无损伤时增大,拉应力幅值减小;损伤塑性模型能很好地反映道床板混凝土的软化及刚度退化行为.  相似文献   

15.
高速铁路路基结构时变系统耦合动力分析   总被引:2,自引:0,他引:2  
马学宁  梁波 《铁道学报》2006,28(5):65-70
在车辆的走行过程中,上部与下部是相互作用和影响的,因此,轨道交通问题实际上就是线路上下部结构和车辆系统的体系匹配问题。本文针对列车走行的实际情况,将轨道-路基作为参振子结构纳入车辆计算模型,建立了包含车辆、钢轨、轨枕、道床和路基作为一体的二系垂向耦合动力分析模型。作为模型的验证,结合京秦线提速改造工程进行了列车-路基动力仿真计算,得出在不同行车速度条件下,机车车辆通过路基段加固前后状态下的车体加速度、动轮载、轮重减载率及道床和路基主要动力性能指标,并与实车试验进行对比。试验测试结果验证了理论模型和分析方法的有效性,为高速铁路路基的动力特性分析和设计提供一些参考。  相似文献   

16.
基于列车—轨道耦合动力学理论,建立能够考虑无砟轨道-路基系统各部件间接触状态非线性的列车-路基上板式无砟轨道三维有限元耦合动力学模型,并对建立的三维非线性有限元耦合动力学模型进行相应的程序验证。运用建立的耦合动力学模型,对列车在路基上无砟轨道线路上高速行驶时,在路基不均匀沉降作用下,列车-路基上无砟轨道耦合系统动力特性进行研究。研究结果表明:(1)路基不均匀沉降对车体振动加速度影响极大,路基不均匀沉降对车体振动加速度的影响与无砟轨道类型关系不大;(2)路基不均匀沉降对无砟轨道各部件动力特性有一定的影响,影响小于对车体振动加速度的影响,路基不均匀沉降对无砟轨道各部件动力特性的影响与无砟轨道类型有一定的关系,总体来讲,路基不均匀沉降对I型板式无砟轨道动力特性的影响要大于对双块式及Ⅱ型板式无砟轨道的影响。  相似文献   

17.
遂渝线无砟轨道动力学性能研究   总被引:3,自引:0,他引:3  
蔡成标  颜华  姚力 《铁道工程学报》2007,24(8):39-43,57
研究目的:研究建立无砟轨道结构动力学性能评估的方法和手段。 研究方法:应用车辆-轨道耦合动力学理论,建立列车一无砟轨道空间耦合振动模型,从而导出弹性地基上轨道板的运动方程;应用开发的无砟轨道动力学仿真软件TRACKDYNA,系统地研究评估遂渝线综合试验段无砟轨道及其过渡段的动力学性能。 研究结果:快速客车、重载货车以及普通货车通过路基上板式轨道时,轮轨垂向力、轮轨横向力、脱轨系数、轮重减载率、CA砂浆动应力、路基面动应力等动力学指标均小于容许值。 研究结论:遂渝线无砟轨道结构动力学性能满足设计要求,过渡段结构设计方案是合理的;对于双块式轨道过渡段,适当降低2种轨道连接点处双块式轨道前几个扣结点的轨下胶垫刚度,可改善过渡段的动力学性能。  相似文献   

18.
利用基于横向有限条与无砟轨道板段单元的车轨系统竖向振动分析方法,研究1对和多对扣件失效时城市轨道交通列车-浮置板式轨道系统的竖向振动响应。研究结果表明,当列车通过扣件失效的轨道时,轮轨相互作用增大,其中钢轨竖向位移及加速度增长最明显,且随着失效扣件数目增加,动力响应增长越明显;即使毗邻轨道的扣件工作状态良好,也受到失效扣件的影响,钢轨竖向位移及加速度增长显著;扣件失效会加速轨道结构破坏,甚至危及行车安全。  相似文献   

19.
不同时速下地铁多种轨道结构现场测试与分析   总被引:2,自引:2,他引:0  
近年来地铁振动污染问题日益突出,地铁中亦采用多种减振轨道结构型式用于减振。为详细评价各种减振轨道结构的减振效果,以地铁动力测试为依托,在频域内分析4种轨道结构各测试断面在不同时速下的振动特征。结果表明:对于长枕埋入式整体道床轨道而言,行车速度的增加对钢轨、道床、隧道竖向加速度低频范围内的影响较大,而在中高频影响较小。对于GJ-Ⅲ型中等减振扣件轨道,随着行车速度的增加,GJ-Ⅲ型中等减振扣件轨道减振效果下降较明显。同时随着行车速度的提高,橡胶隔振垫浮置板轨道仅对浮置板和隧道减振效果较稳定,而钢弹簧浮置板轨道对钢轨、浮置板及隧道减振效果都很稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号